卡尔曼滤波 卡尔曼增益详细推导

本文详细解析了卡尔曼滤波的状态空间方程,并逐步导出了卡尔曼增益的计算过程,通过实例探讨如何最小化估计误差。涉及先验后验估计、误差协方差矩阵,适合动态系统状态估计的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我听了DR_CAN的B站博主的卡尔曼增益的详细推导,全网最详细的推到课程之后,

自己仔细的总结,在借鉴CSDN其他的博主,得到了现在的推导过程

一。状态空间方程

用状态方程的形式描述系统的动态响应。

二。卡尔曼增益的推导过程

   

由于过程噪声是不确定的,于是状态估计值先验为

根据先验估计和测量估计可得出后验估计

我们的目标是求得合理的Kk值使得估计误差最小,有

当后验估计值越接近真实值 Xk, 则说明 ek 的方差越小,即 ek 越接近于期望值0 00。于是有

先验误差协方差矩阵

ek的协方差矩阵Pk

由之前的推导可得

总结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值