智能的数学公式:Intelligence = Priori knowledge * Reasoning ?

爱因斯坦的相对论公式大道至简,E=mc^{2}

假如智能有公式的话,会不会是:Intelligence = Priori knowledge * Reasoning^{n}

        其中,两个影响因子分别是先验知识 和 推理能力,推理能力的指数部分可以是整数也是小数,但是暂时还不好确定。

解析:(1)先验知识指的是在某个时间节点前掌握的知识;推理能力指的是智能体自身的推理架构或范式,独立于先验知识之外的能力,也可以是基于知识的推理。

(2) 保持推理能力这个影响因子不变的情况下,先验知识越多的人表现的越聪明(或智能系统表现的越智能)。例如问小学生高中或者大学的知识,大部分人都知道。但是问那些考上少年班大学的孩子们,他们就会比同龄人掌握太多高年级的知识。 这就说明了先验知识的重要性。

(3)保持先验知识这个影响因子不变的情况下,推理能力越强的人表现的越聪明(或智能系统,AI也好,大模型也好,什么新名词不重要,反正是计算机系统经过训练后的模型)。例如高考学生这么多,很多学习的先验知识差不多,努力程度差不多,但是只有极少数能考上清华北大。这个推理能力到底是什么暂时还不清楚。但是可以参考贝叶斯推理那个公式,基于先验知识的概率推理。

本文仅是提前在这占坑,毕竟不是严谨的科学论文,没法发到期刊杂志。

注:本文发布于2025年03月29。

import serial import threading import time import numpy as np class KalmanFilter: def __init__(self, process_variance, measurement_variance, estimated_measurement_variance): self.process_variance = process_variance self.measurement_variance = measurement_variance self.estimated_measurement_variance = estimated_measurement_variance self.posteri_estimate = 0.0 self.posteri_error_estimate = 1.0 def update(self, measurement): priori_estimate = self.posteri_estimate priori_error_estimate = self.posteri_error_estimate + self.process_variance blending_factor = priori_error_estimate / (priori_error_estimate + self.measurement_variance) self.posteri_estimate = priori_estimate + blending_factor * (measurement - priori_estimate) self.posteri_error_estimate = (1 - blending_factor) * priori_error_estimate return self.posteri_estimate # 全局变量 aoa = 0.0 # 角度(Angle of Arrival) dis = -1.0 # 距离 work_mode = 0 # 工作模式(0:跟随模式) pdoa_flag = 0 # PDOA 标志 no_pdoa_count = 0 # 无 PDOA 计数 # 初始化 UART(与 UWB 传感器通信) try: ser = serial.Serial('COM3', 115200, timeout=1) # 修改为实际端口,如 COM4 except serial.SerialException as e: print(f"Error opening serial port: {e}") exit(1) def parse_aoa(data): global aoa, dis, work_mode, pdoa_flag, no_pdoa_count if data.startswith(b'MP'): parts = data.decode().strip().split(',') try: tid = int(parts[1]) x = int(parts[2]) y = int(parts[3]) range = int(parts[4]) rangnb = int(parts[5]) pdoa = float(parts[6]) # 修改为 float aoa = float(parts[7]) work_mode = int(parts[8]) dis = float(range) / 100.0 print(f"aoa={aoa}, dis={dis}") no_pdoa_count = 0 pdoa_flag = 1 except (ValueError, IndexError) as e: print(f"Error parsing data: {e}") print(f"Raw data: {data}") def uar
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值