AI 编程的低门槛化无疑是2024年AI 发展的最大亮点之一。
无代码和低代码工具的崛起,让不懂编程的普通人也能通过拖拽和简单配置创建AI应用。
大模型能力进一步提升,开发者只需提供简单的指令或自然语言描述,大模型便可以生成可用的代码、脚本甚至完整的解决方案。
这一趋势将AI开发从专业领域带入更广泛的应用场景。
一、AI 开发的三种模式
在 AI 大模型迅速普及的今天,越来越多的人希望开发自己的 AI 应用,但往往面对复杂的AI大模型技术门槛望而却步。
其实,AI 开发并不总是高深莫测,按照难度划分,AI 开发可以分为三种不同的模式:
1、自建大模型
这是 AI 开发的顶尖领域,通常由大型科技公司或资深 AI 专业人士掌控。
他们通过从零搭建大规模GPU算力集群,自建大模型算力的基础架构、搜集并清洗大量的数据、使用 AI 训练算法,从而构建出完全定制化的解决方案。
这种方法的优势在于灵活性无可比拟,但难度和成本也同样“无可比拟”。没有丰富的技术储备和资金支持,这条路显然不适合普通人。
2、大模型 API 调用
接下来是 API 调用模式,这可以看作是 AI 开发的技术与效率的平衡点。
通过调用ChatGPT、Claude、或者部署好的 AI 大模型 API 接口,开发者可以避免繁琐的数据处理和模型预训练工作,而是直接调用训练好的大模型,专注于通过编程将这些现成的能力整合到自己的应用中。
这种方式的好处是适配性很强,几乎可以满足各种定制化需求,但它对专业编程能力有一定要求,同时脚本的编写和调试也需要投入相当多的时间和精力。
3、工作流模式
最后,是最适合咱们普通人的工作流模式。
这种模式直接消除了编程的壁垒,AI 服务商提供了可视化的工具和自动化流程,用户只需简单拖拽或配置,就能轻松实现自己的 AI 应用。
你不需要自己搭建服务器,也无需掌握技术细节,一切都变得简单直接。
然而,这种模式的局限在于功能范围受限于服务商的能力,如果对方没有提供你需要的功能,就无计可施。
在这篇文章中,我们将重点讲解如何通过门槛最低、人人可用的工作流模式实现无代码开发 AI 应用,帮助你用最低的技术门槛快速实现创意,成为数字化时代的“技术创作者”。准备好了吗?让我们从头开始,解锁这条人人可行的 AI 开发之路!
二、GPT 商店和 Copilot 模板
许多 AI 大厂都推出了“工作流模式”,旨在为开发者提供更简便、灵活的方式来定制自己的 AI 应用。
通过这一模式,开发者可以在已有的强大 AI 模型基础上,结合自己的需求,快速构建特定领域的解决方案,而无需从头开始训练模型。
这种方式大大降低了 AI 开发的门槛,同时提升了开发效率。
其中,OpenAI 的 GPT 商店 是最具代表性和影响力的例子。
OpenAI 提供的 ChatGPT 模型,作为一种强大的通用语言模型,已经为很多应用场景提供了基础支持。
而通过 GPT 商店,OpenAI 允许开发者在其强大能力的基础上,定制和开发专用的 ChatGPT 应用。
例如,开发者可以创建一个 学术论文专用的 GPT,让它更擅长处理学术领域的文本,包括论文的撰写、文献综述、数据分析等。
或者构建一个 处理 Excel 文件的 GPT,让 AI 更高效地执行数据清理、分析以及生成报表等任务。
通过 GPT 商店,开发者不仅能够定制这些模型,还能通过简单的配置和调整,满足不同领域和行业的需求。
微软的 Copilot 确实也提供了类似的功能,称为 “模板”(Template)。
这一功能在微软的产品生态中,特别是在开发和办公领域,得到了广泛应用,进一步简化了 AI 与工作流的整合过程。
虽然 OpenAI 的 GPT 商店和微软的 Copilot 模板等国际平台提供了强大的功能,
但由于这些服务通常需要收费,且服务器部署在境外,这在一些场景下可能会带来一定的使用障碍,
比如访问速度慢、数据隐私问题以及不稳定的网络连接等。
幸运的是,国内也有很多优秀的 AI 产品和服务,提供了与国际平台类似的功能,且大多数是免费的或者具备非常有竞争力的价格。
这些本地产品不仅符合国内用户的需求,而且通常会考虑到本土化的特点,如中文处理能力更强、符合国内法规的隐私保护政策,以及更低的延迟和更好的网络稳定性。
三、无代码开发AI应用工具的选择
我们选择的工作流工具是扣子(Coze)。
Coze 平台的最大优势在于它的无代码开发方式,前后端的生成都采用了图形化操作,大大降低了开发门槛。
你只需要关注应用的逻辑和功能,而不必深入编写繁琐的代码。
选择 Coze(扣子)作为开发平台,主要有以下三个原因:
-
国产平台,支持中文
Coze 是一款由字节跳动推出的国产 AI 应用开发平台,其界面、文档以及客服服务均为中文,使用起来更贴近国内用户的需求。 -
内置无代码编辑器,简单易用
平台提供了无代码编辑器 Project IDE,其中包含可视化的 UI Builder,可以通过拖拽组件快速生成全功能的前端界面,大幅降低了开发的上手门槛,非常适合新手用户。 -
免费使用,适合练习
Coze 提供免费额度的使用,发布和上线应用也无需额外费用,非常适合初学者用于学习和练习。
此外,Coze 还支持后端数据库功能,可实现数据的读写操作,进一步提升开发效率和功能完善性。
四、用工作流模式开发项目示例简介
我们的示例项目,从一个最简单的AI 文言文转换器做起。
输入一段现代汉语白话文,点击按钮后,AI 将自动转换生成并输出对应的文言文。整个开发流程极为简洁,非常适合咱们新手用来练手。
开发流程概述
-
后端开发
首先,我们需要启动后端的 AI 模型。这个模型负责处理用户输入并返回相应的文言文翻译。后端的工作流是通过图形化操作进行配置的,用户只需编排各个节点,轻松构建一个完整的后端流程。 -
前端开发
接下来,我们需要创建一个简单的网页表单,让用户输入汉语白话文。当用户点击按钮时,表单会将输入发送到后端进行处理,随后返回文言文的翻译结果。前端的设计同样是图形化操作,使用 Coze 提供的 UIBuilder,用户可以通过拖拽组件来搭建界面,快速生成一个功能齐全的前端。
开发步骤详解
-
启动后端模型
首先,你需要在 Coze 后端创建一个 AI 模型工作流,确保它能够接收用户输入并正确返回文言文翻译。 -
创建前端页面
使用 Coze 的 UIBuilder 拖拽组件功能,设计一个简洁的网页界面,允许用户输入白话文。接着,将前端与后端连接起来,实现数据交互。
虽然这看起来有点长,但实际操作非常简单。如果你熟悉平台操作,整个开发过程通常只需十几分钟即可完成。
总的来说,Coze 提供了一个极为简洁且高效的开发环境,使得没有开发经验的用户也能快速上手,完成 AI 应用的开发。
五、创建项目
我们需要进行一些开发准备工作,首先创建一个 AI 应用。
1、登录 Coze 官网
访问扣子官网【https://www.coze.cn】,进行账号注册,如果已有账号,则选择登录。
点击右上角的“登录”按钮。
基础版与专业版登录入口已合并,基础版仅在企业级功能上有所限制,对于普通用户而言,功能完全足够。
2、进入个人主页
登录成功后,系统会自动跳转到个人主页。在左侧菜单中点击“工作空间”进入。
3、选择项目开发
在工作空间页面,您将看到“项目开发”和“资源库”两个选项。进入“项目开发”页面,您可以查看到自己所有的项目。
4、创建新项目
点击页面右上角的“创建”按钮,会弹出一个选择框。
在弹框中,您有两个选项:“创建智能体”用于创建传统的 AI 聊天应用,“创建应用”则用于创建自定义界面的 AI 应用。
上面有两个选项,"创建智能体"是快速搭建一个类似传统的 AI 聊天机器人,"创建应用"则是创建一个你可以自定义 UI 界面的 AI 应用工作流。我们选择的,就是“创建应用”。
5、选择空白应用模板
选择“创建应用”后,系统会要求您选择应用模板。点击“创建空白应用”进入下一步。
6、输入项目名称
在此页面,输入项目名称,例如“AI 文言文转换器”。在应用介绍中,输入应用主要的功能,Coze 可以根据输入的名称和应用介绍,自动调用 AI 生成一个有趣的个性化应用图标。
至此,项目已创建完成。系统会自动跳转到“AI 文言生成器”应用的主页,正式的开发工作将从这里开始。
六、构建业务逻辑工作流:后端 AI 模型的配置
应用主页的最上方,有"业务逻辑"和"用户界面"两个子页面,分别对应开发的“后端业务逻辑”和“前端用户界面”两个阶段,默认是"业务逻辑"子页面。
我们首先通过工作流模式构建后端的 AI 模型业务逻辑。
1. 新建工作流
- 操作:点击左侧菜单中“工作流”标签后的“+”号,选择“新建工作流”。
- 输入信息:填写工作流名称和描述。
注意:名称必须由英文字母、数字或下划线组成。例如:cl_chinese_creator
。
2. 进入节点编排画布
- 操作:工作流创建成功后,其名称会出现在左侧菜单的“工作流”标签下方。点击该名称,进入对应工作流的“节点编排”画布。
- 画布说明:初始画布上会显示两个默认节点:“开始”和“结束”。
3. 添加新节点
- 操作:点击画布下方的“添加节点”按钮,选择节点类型为“大模型”。
- 连线节点:将“开始”节点、“大模型”节点和“结束”节点通过拖动边框控制点连接起来,形成完整流程。
4. 配置“开始”节点
- 操作:单击“开始”节点,在右侧弹出的配置框中添加变量
content
,用于表示用户输入内容。
5. 配置“大模型”节点
在“大模型”节点的配置窗口中,按照以下内容进行填写:
- 模型:选择合适的模型类型,默认为“豆包·工具调用 模型”。
- 输入参数:将默认的
input
参数重命名为content
,并与“开始”节点中的content
变量相连接。
- 系统提示词:输入以下内容,用于设定大模型接收Prompt提示词之后的转换生成行为:
# 角色设定
你是一位精通中国汉语文言文的专业作家,擅长将现代汉语白话文准确改写为优美、流畅且符合文言文规范的文章。你的改写风格典雅含蓄,既保留白话文的核心思想,又能够通过适度扩展提升文字的文学性和韵味感。
## 核心技能
### 1、文言文改写能力
1. 根据用户提供的汉语白话文,精准改写为符合文言文规范的内容,确保改写后的语句简洁、含蓄而不失思想深度。
2. 改写时注重句式对仗、遣词造句的规范性,以及古典韵味的呈现,增强文字的流畅性和艺术感。
3. 对于关键情境或意象,可以适度扩展和联想,增加表达的画面感和韵味,但不偏离原文主题。
## 限制
### 任务边界
1. 仅针对用户提供的白话文内容进行文言文改写,不回答与文言文改写无关的问题。
2. 不擅自增加任何与原意无关的内容,但可以适度扩展以优化表达的连贯性和优雅感。
3. 改写后的文言文需逻辑清晰、语言精炼,避免过度复杂化导致难以理解。
### 风格与规范
1. 使用纯正文言文语法和词汇,不混杂现代语言风格。
2. 保留白话文中所传达的情感、思想和逻辑,并确保文言文改写后的内容与原意一致。
## 示例
### 白话文输入:
“科技的发展给人类带来了巨大的便利,比如可以通过网络与千里之外的亲友沟通。”
### 文言文改写:
“科技日新月异,惠泽人寰。譬如千里虽遥,亦可借网通亲友之情。”
在用户提示词框里输入以下内容,作为给系统的直接命令。
将用户输入的现代汉语白话文{{content}}改写转换成中国古代文言文。
上面文本中的{{content}},表示此处系统将插入 content 变量的内容。
输出:将输出格式改为"文本"。
6、配置"结束"节点。
首先点击配置框上部的"返回文本"。
设置输出变量:将 output 参数绑定到“大模型”节点的 output 变量。
配置回答内容:在回答中输入 {{output}}(表示动态插入 output 变量的内容),并启用“流式输出”(即打字机效果)。
至此,整个工作流已搭建完成。您可以点击画布下方的绿色“试运行”按钮,测试工作流是否正常运行。
可以看到试运行的输出结果。
完成以上步骤后,我们的业务逻辑已经成功创建,并可以按照个性化需求进行进一步调整和优化。
如果一切正常,我们就进入搭建用户界面的工作。
本教程的上半部分到此结束,下半部分敬请期待更新!