【机器学习】机器学习的基本分类-强化学习-模型预测控制(MPC:Model Predictive Control)

Model Predictive Control (MPC)

Model Predictive Control (MPC),即模型预测控制,是一种基于优化的控制算法,广泛应用于工业、自动驾驶、机器人等领域。它通过预测未来系统的行为,并在线解决优化问题来获得控制输入,从而实现对系统的高效控制。


核心思想

MPC 的主要思想是:

  1. 使用系统的动态模型预测未来一段时间(预测时域)内的系统行为。
  2. 求解一个优化问题,最小化目标函数,同时满足约束条件。
  3. 仅执行第一个时间步的控制输入,然后滚动时域,重复上述过程。

基本组成

  1. 动态模型

    • 描述系统的动态行为。可以是线性或非线性模型,例如:
      • 离散线性系统:

                                        x_{t+1} = A x_t + B u_t
      • 非线性系统:

                                         x_{t+1} = f(x_t, u_t)
      • x_t:系统状态;u_t:控制输入。
  2. 目标函数

    • 定义控制目标,例如最小化误差或控制能量:

                                 J = \sum_{k=0}^{N-1} \| x_{t+k} - x_{\text{ref}} \|_Q^2 + \| u_{t+k} \|_R^2
      • N:预测时域长度;
      • Q, R:权重矩阵,分别用于状态偏差和控制输入。
  3. 约束条件

    • 包括:
      • 状态约束:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值