Model Predictive Control (MPC)
Model Predictive Control (MPC),即模型预测控制,是一种基于优化的控制算法,广泛应用于工业、自动驾驶、机器人等领域。它通过预测未来系统的行为,并在线解决优化问题来获得控制输入,从而实现对系统的高效控制。
核心思想
MPC 的主要思想是:
- 使用系统的动态模型预测未来一段时间(预测时域)内的系统行为。
- 求解一个优化问题,最小化目标函数,同时满足约束条件。
- 仅执行第一个时间步的控制输入,然后滚动时域,重复上述过程。
基本组成
-
动态模型
- 描述系统的动态行为。可以是线性或非线性模型,例如:
- 离散线性系统:
- 非线性系统:
:系统状态;
:控制输入。
- 离散线性系统:
- 描述系统的动态行为。可以是线性或非线性模型,例如:
-
目标函数
- 定义控制目标,例如最小化误差或控制能量:
- N:预测时域长度;
- Q, R:权重矩阵,分别用于状态偏差和控制输入。
- 定义控制目标,例如最小化误差或控制能量:
-
约束条件
- 包括:
- 状态约束:
- 包括: