起因
在一个项目的实验过程中,需要对遥控小车的位置进行跟踪和测算。在一穷二白只有一个空房间的情况下,只能自己动手造工具了。本着开放共享的精神,以及为挽救同胞们的头发着想,有必要把原理和过程写下来。所以本文将叙述:如何使用五毛钱成本搭建一个基于视觉的目标测量平台。
目的和环境
人为指定空房间的坐标系,例如左下角是原点,向上是z轴;房间地板上有一个待测坐标的目标;房间地面上放置若干位置已知的定位点;任意放置摄像机,拍摄包含了所有这些元素的图像;编写程序计算目标的位置。
下面的示意图表达了上面这段画的意思。
流程
1. 预备知识
1.1 三种坐标系
相机坐标系(Xc, Yc, Zc):以相机感光原件为坐标系原点,Zc轴与镜头的光轴平行。所有相机坐标系中的坐标点是以摄像机的视角而言的。对于空间中固定的一点,其在相机坐标系中的坐标会随着相机位置的变动而改变。
世界坐标系(Xw, Yw, Zw):人为定义的、实际空间中的坐标系。例如在本例中,人为指定了房间左下角为世界坐标系原点,向上是Z轴。世界坐标系与相机坐标系本没有任何关系,但物理空间中某点的坐标可以在两个坐标系之间转换。转换的方法也很简单,就是旋转变换+平移变换:

像平面坐标系(u, v):成像之后照片中的坐标系,二维平面,单位是像素,坐标原点已经不在中心,而是在画面左上角。如图所示:
通过相机的成像模型,可以将相机坐标系中的三维点映射到成像屏幕上的二维点。
1.2 成像模型
初中的物理课上学到过,凸透镜满足下列公式,称为”薄镜公式”
$$\frac{1}{f} = \frac{1}{{do}} + \frac{1}{{di}}$$
在相机镜头上,do>>di≈f
可以简化得到针孔相机成像模型:
这里把成像面移到了右边,但不妨碍数学上的正确。根据相似三角形原理,有:
因此,相机坐标系中的点[X,Y,Z]转换到二维成像面上的[x,y],可以通过下列公式实现:
这里,[X,Y,Z]和[x,y]的量纲仍旧一样,是物理长度;[x,y]的坐标原点还是成像平面与光轴的交点。
但是,在图像处理时,处理对象是像素,而且图像左上角才是原点,如下图。
所以从相机坐标系到图像坐标的变换如下。
其中3*4矩阵的第4列将原点移到了左上角;fx的量纲不再是长度,而是像素/长度,实际上,fx=f/px, px是x方向上像素的宽度。
此外,这个3*3矩阵也叫做相机的内参矩阵,因为传感器和相机镜头的参数决定了这个矩阵。
再把世界坐标系也引入进来,最终的成像模型表达式如下(!划重点!)
其中A由相机本身决定,称之为相机矩阵或内参(intrinsic parameters)矩阵,R为旋转矩阵,T为平移向量,称之为外部参数。
2. 相机标定
相机标定的目的是为了求得内参矩阵A和镜头畸变系数dist (distortion coefficients).
内参矩阵A的含义在前面已经叙述过了,畸变系数dist是为了矫正镜头对成像造成的畸变。畸变包括径向畸变(radial distortion)和切向畸变(tangential distortion)。
最典型的径向畸变是广角镜头的成像效果;而切向畸变来源于镜头和感光器件组装时的不平行,在五块钱的相机模组上尤其严重。
下图展示了径向畸变和切向畸变的效果。


径向畸变和切向畸变可以通过数学模型尽可能地复原,但也仅是近似复原而已,再也回不到最初的模样了。畸变矫正的模型如下:
其中k1-k6用于矫正径向畸变,称为径向畸变系数。p1、p2用于矫正切向畸变系数。
根据矫正时所用阶数的不同,opencv中使用的畸变参数格式如下,
参数的数量可以是4、5、8.
相机标定的本质是:对已知角点三维位置关系的标志板成像,使图像点的预定义位置(根据三维点的投影计算得到)和实际位置(图像中的位置)之间的距离达到最小。每个点在标定过程中都会产生这个距离,它们的累加和就是重投影误差. 以重投影误差为优化目标,求解内存矩阵A和畸变参数dist. 求解过程有点复杂,但前人的成果已经变成函数可以用了。张氏标定算法(Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000)就是做这件事的。
标志点一般使用棋盘图案
当然也可以用圆盘
有闲情逸志自己在地上画几个点也可以,
理论上只要能得到一组[ 物理世界三维坐标 - 图像二维像素坐标]的集合就可以。
所以你可以在这里找到各种可用于标定的pattern.
本文中使用棋盘标志板,手机摄像头拍摄。现在手机的镜头都有自动对焦功能,不同的焦点下内参是不一样的,因此需要用手动模式固定对焦点到无穷远。推荐一款软件cinema FV-5 可以在摄像时锁定对焦点。
然后从不同角度,不同距离,不同位置拍摄二十张左右的棋盘图片
Opencv中相机标定的核心函数是calibrateCamera()。我们准备使用棋盘标志板,用python语言,函数的输出输出如下:
cv2.calibrateCamera(objectPoints, imagePoints, imageSize[, cameraMatrix[, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]]]) → retval, cameraMatrix, distCoeffs, rvecs, tvecs
调用calibrateCamera()前需要先准备好feed它的参数,主要是标志板上的三维坐标点集合objectPoints和对应的二维像素坐标imagePoints.
objectPoints是已知的,棋盘上的角点位置是四四方方的排布,直接构造就好了,
objp = np.zeros((cornerX*cornerY,3), np.float32)
objp[:,:2] = np.mgrid[0:cornerX,0:cornerY].T.reshape(-1,2) * squareSize
求解内存A和畸变系数时,棋盘格子的长度单位其实不需要知道,只需要知道相对位置即可,因为长度比例并不影响这两个参数的求解。棋盘格子的长度最终会影响外参R和T. 但每个此从棋盘图像求解到的外参并不一样,我们暂且也不需要这些外参。所以上面的 squareSize其实可以直接设成1,opencv的例子中直接就没有乘以 squareSize这个过程,如果不知道标定的原理,看了就容易让人产生困惑。
通过检测图片中的角点确定对应的图像二维坐标点,这里使用findChessboardCorners()函数.
运行程序,标定结束之后在终端显示内参矩阵和畸变系数:
$ python calibrate.py
('mtx: \n', array([[ 1.58908007e+03, 0.00000000e+00, 9.63684080e+02],
[ 0.00000000e+00, 1.59532586e+03, 5.61602291e+02],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]))
('dist: \n', array([[ 4.17032261e-01, -1.97266626e+00, 2.26847015e-03,
1.37087506e-03, 3.12510368e+00]]))
calibration finished, result saved as .npz file
完整的程序如下。
#!/usr/bin/ python
# -*- coding: utf-8 -*-
#從文件夾讀取棋盤圖片,校準相機,將參數保存到文件.
#2019年7月17日
#guofeng, mailto:gf@gfshen.cn
#---------------------------------------
import numpy as np
import cv2
import glob
#ref: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
def calibrate(cornerX=8,cornerY=6, squareSize=24.5,images=glob.glob('*.jpg') ):
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((cornerX*cornerY,3), np.float32)
objp[:,:2] = np.mgrid[0:cornerX,0:cornerY].T.reshape(-1,2) * squareSize #如果squareSize设错,对mtx和dist的估计没有影响,但对rvecs和tvecs有影响
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (cornerX,cornerY),None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (cornerX,cornerY), corners2,ret)
cv2.imshow('img',img)
cv2.waitKey(500)
cv2.destroyAllWindows()
#开始标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
if ret:
print('mtx: \n',mtx)
print('dist: \n', dist)
#print('rvecs: \n', rvecs)
#print('tvecs: \n',tvecs)
np.savez('calibrateData.npz', mtx=mtx, dist=dist)
return ret, mtx, dist, rvecs, tvecs
def undistortion(img, mtx, dist):
h, w = img.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
# crop the image
x, y, w, h = roi
if roi != (0, 0, 0, 0):
dst = dst[y:y + h, x:x + w]
return dst
if __name__ == '__main__':
image=glob.glob('./chessBoardNote3/*.bmp')
if not image:
raise RuntimeError('Cant find image,exting')
#用于存储内参矩阵和畸变参数
mtx = []
dist = []
try:
npzfile = np.load('calibrate.npz')
mtx = npzfile['mtx']
dist = npzfile['dist']
except IOError:
ret, mtx, dist, rvecs, tvecs = calibrate( cornerX=8,cornerY=6, squareSize=24.5,images= image )
print('calibration finished, result saved as .npz file ')
至此,得到了相机内参。接下来将使用已知参数的相机,保持固定焦点,拍摄包含目标的图像,然后测算目标位置。