Bevfusion MMDetection3d数据处理过程详解

Bevfuion 使用Nuscenes数据集下载

由于mit版本的bevfusion不再有人维护,所以使用MMDetection3d维护的bevfusion版本

  1. Nuscenes数据集下载可以使用opendatalab提供的nuscenes提供下载数据方案,官网地址:https://opendatalab.com/
    在这里插入图片描述
    使用如下命令下载
# install OpenDataLab CLI tools
pip install -U opendatalab
# log in OpenDataLab. Note that you should register an account on [OpenDataLab](https://opendatalab.com/) before.
pip install odl
odl login
# download and preprocess by MIM
mim download mmdet3d --dataset nuscenes

Bevfuion 处理Nuscenes数据集

处理数据集使用

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes

下载好的原始数据如下格式

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval

处理完的数据如下格式

mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   │   ├── nuscenes_gt_database
│   │   ├── nuscenes_infos_train.pkl
│   │   ├── nuscenes_infos_val.pkl
│   │   ├── nuscenes_infos_test.pkl
│   │   ├── nuscenes_dbinfos_train.pkl

处理过程可以看到各个阶段的耗时,生成的文件 (mit bevfusion在数据处理过程中有问题,并且代码低效,数据处理时间过长 )
在这里插入图片描述

  • nuscenes_gt_database 下面存放的是目标点云真值,训练数据集的每个 3D 包围框中包含的点云数据。后续用来做数据增强
  • 各个pkl文件包含了训练集,验证集,测试集的一些数据信息。该字典包含了两个键值:metainfo 和 data_list。metainfo 包含数据集的基本信息,例如 categories, dataset 和 info_version。data_list 是由字典组成的列表,每个字典(以下简称 info)包含了单个样本的所有详细信息。

Bevfuion 处理Nuscenes数据集代码详解

代码入口在/mmdetection3d/tools/create_data.py

  1. 可以通过设置273行–workers参数改变default来改变线程数量,增加并发,快速完成数据集相关pkl生成
  2. nuscenes数据集处理入口在下面这个函数中
def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
                       
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
    """

获取 nuscenes_infos_xxx.pkl 的核心函数为 _fill_trainval_infos

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack_Man_N

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值