大模型的嵌入(Embedding)是一种将非结构化数据(如文本、图像、音频等)转换为低维连续向量表示的核心技术。它通过数学模型将人类可理解的符号转化为机器可处理的数值形式,从而捕捉数据间的语义关联,支撑大模型对多模态信息的理解和生成。
一、核心原理
-
数据向量化
嵌入技术通过神经网络模型(如Transformer)将高维离散数据(如单词、图片像素)映射为低维稠密向量。例如,单词“猫”和“狗”在向量空间中距离较近,而“苹果”因语义差异距离较远。这种向量化的核心在于捕捉数据的潜在关系,例如通过词频统计(Word2Vec)、上下文动态调整(BERT)等技术实现。 -
数学本质
嵌入向量本质上是多维矩阵,其维度表示数据特征的复杂度。例如,高维向量能捕捉更细微的语义差异,但也需要更高的计算资源。常见的向量计算方式包括余弦相似度、欧氏距离等,用于衡量数据相关性。 -
动态与静态嵌入
- 静态嵌入(如Word2Vec):生成固定向量,无法处理一词多义。
- 动态嵌入(如BERT):根据上下文调整向量,解决多义词问题(如“苹果”在不同句子中的不同含义)。
二、技术分类与模型
-
文本嵌入
- 词嵌入:Word2Vec(通过上下文预测词)、GloVe(基于全局词频统计)、FastText(支持子词分解)。
- 句子/文档嵌入:BERT、Sentence-BERT(捕捉长文本语义),适用于问答系统、文本分类。
-
多模态嵌入
- 图像嵌入:ResNet、CLIP(将图像映射为向量,支持跨模态检索)。
- 音频嵌入:Wav2Vec 2.0(将语音波形转为语义向量)。
- 图嵌入:Node2Vec(社交网络节点表示)。
-
专用模型
- BGE-M3:支持长文本(8192 tokens)和混合检索。
- Gemini Embedding:高精度多语言支持,适用搜索引擎优化。
三、应用场景
-
自然语言处理
- 语义理解:BERT嵌入可区分“苹果公司”和“水果苹果”。
- 机器翻译:XLM-Roberta支持跨语言任务。
-
推荐系统
通过用户行为嵌入和商品特征向量计算相似度,实现个性化推荐。 -
多模态交互
CLIP模型支持图文联合嵌入,用于跨模态生成(如“用文字描述生成图片”)。 -
知识图谱
嵌入技术将实体(如“汤姆·汉克斯”)和关系(如“出演”)映射为向量,支持知识推理和链接预测。
四、技术演进
-
早期发展
1954年分布式语义理论提出“通过上下文理解词义”,2013年Word2Vec实现词向量化突破。 -
动态嵌入革命
2018年BERT引入双向Transformer,实现上下文感知嵌入,成为大模型标准配置。 -
多模态扩展
近年来,嵌入技术从文本扩展到图像、语音、图结构,支撑大模型的全模态处理能力。
五、总结
嵌入技术是大模型理解世界的“语言”,通过向量化将复杂数据转化为可计算的数学形式,驱动语义理解、多模态交互等核心能力。随着动态嵌入、多模态模型的进步,其应用边界正不断扩展至医疗、金融、教育等领域。