【目标检测】YOLOV4网络结构解析--不断后续补充

Darknet53

Darknet53是YOLOV3的骨干网络结构,因为网络有53层卷积层,所以名为Darknet53。
在这里插入图片描述

YOlOv4网络组成

YOLOV4原论文中对现有的目标检测网络结构进行了归纳,分为四部分:

  1. Input----网络的输入
  2. Backbone—用来从输入图形中提取特征
  3. Neck----对骨干网络提取的特征进行加工,多为特征融合等方式
  4. Dense/Sparse Prediction—用来对前面三部分的数据进行预测,即获得输入图形中objects的类别与边界框信息.
    在这里插入图片描述

Input

YOLOV4的输入图形一般为416 X 416或608 X 608大小的RGB图像。在这里插入图片描述

CSPDarknet

CSPDarkent是在YOLOV3的基础上进行的改进,主要的改进是在Darknet53的基础上加上了残差结构。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
骨干网络的具体构建流程如下:

  • CBM卷积模块:由一个传统的卷积层+BN层+Mish激活函数三个模块构成。
  • CBL卷积模块:由普通卷积层+BN层+LeakyreLu激活函数等当个模块构成。
  • Resunit:是两个CBM卷积构成的残差结构
  • CSPX(X表示重复连接个数):如上图所示,由CBM,Resunit两个模块复合而成。

Neck

  • 所谓Neck网络,更多的对Backbone提取的特征进行特征融合处理,YOLOV4输出四个特征层。
  • 以416 x416大小的输入为例,输出特征层的带下分别我52 x 52、26 x 26及13 x 13。
    -Neck的作用就是将三种不同的特征层进行特征融合,简单一点说就是将三层的特征进行上下采样扩展或缩小到相同的尺寸,进行特征融合。
    在这里插入图片描述

Head

将处理好的数据展评处理,即得出输入图形中Objects的类别和边界框信息。在这里插入图片描述

YOLOV4整体结构图和细节图

整体结构图:
在这里插入图片描述
各层细节图:
请添加图片描述

<think>好的,用户想查找YOLOv1的网络架构并进行解析。我需要先回忆YOLOv1的基本结构,确保信息的准确性。首先,YOLOv1是目标检测领域的开创性工作,将检测任务转化为回归问题,实现端到端的预测。其网络架构基于卷积神经网络,但具体结构需要详细说明。 根据记忆,YOLOv1的主干网络受到GoogLeNet的启发,包含24个卷积和2个全连接。不过可能需要查阅资料确认具体数和结构。用户提供的引用中提到了YOLOv11和YOLOv7的相关资料,但YOLOv1的架构可能需要参考原始论文或其他可靠来源。例如,YOLOv1的论文标题是《You Only Look Once: Unified, Real-Time Object Detection》,作者是Joseph Redmon等。 接下来需要详细解析每个部分。输入尺寸应该是448x448的RGB像,经过卷积提取特征,然后是全连接生成张量。最后的输出是7x7网格,每个网格预测2个边界框和类别概率。需要解释这些部分的作用,比如卷积负责特征提取,全连接生成检测结果,以及输出张量的具体维度。 另外,用户可能对架构中的创新点感兴趣,比如将检测转化为回归问题、网格划分、多任务损失函数等。需要将这些内容清晰地分点说明,帮助用户理解YOLOv1的核心设计。 还要注意回答中的格式要求,行内数学表达式用$...$,独立公式用$$...$$。例如,边界框的坐标和类别概率的计算可能需要数学表达。同时,确保引用正确,根据用户提供的引用资料,可能没有直接关于YOLOv1的内容,但可以引用用户提供的YOLOv7资料作为补充,或者建议查阅原始论文。 最后生成相关问题,需要考虑用户可能的后续疑问,比如与其他YOLO版本的对比、优缺点、损失函数细节等。确保问题有针对性,帮助用户深入理解。 总结步骤: 1. 确认YOLOv1的网络结构,包括数和类型。 2. 详细描述输入、卷积、全连接和输出结构。 3. 解释创新点和设计思路。 4. 使用正确的LaTeX格式。 5. 生成相关问题,促进进一步学习。</think>### YOLOv1网络架构解析 #### 1. 网络整体结构 YOLOv1(You Only Look Once)是首个将目标检测转化为回归问题的单阶段检测模型。其网络架构基于卷积神经网络,输入为$448 \times 448$的RGB像,输出为$7 \times 7 \times 30$的张量,包含边界框坐标、置信度及类别概率[^2]。 完整架构包含: ``` 输入 → 24个卷积4个最大池化 → 2个全连接 → 输出 ``` $$ \text{总参数量} \approx 24.5 \text{百万} $$ #### 2. 核心组件解析 **(1) 卷积特征提取器** - 前20:基于GoogLeNet改进的卷积核组合 - 使用$3 \times 3$和$1 \times 1$卷积核交替堆叠 - 最后一卷积输出$7 \times 7 \times 1024$特征 **(2) 全连接预测** - 第21-24:全连接实现空间展平 - 将$7 \times 7 \times 1024$展平为$50176$维向量 - 最终输出$7 \times 7 \times 30$检测张量 **(3) 输出张量解析** 每个$7 \times 7$网格单元包含: - 2个边界框预测(每个含4个坐标值+1个置信度) - 20个类别概率(PASCAL VOC数据集) $$ 7 \times 7 \times (5 \times 2 + 20) = 7 \times 7 \times 30 $$ #### 3. 创新设计解析 1. **网格划分策略** -像划分为$S \times S$网格($S=7$) - 每个网格负责预测中心点落在该区域的物体 2. **多任务损失函数** - 包含坐标误差、置信度误差、分类误差 $$ \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] $$ $$ + \lambda_{obj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2 $$ $$ + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{noobj} (C_i - \hat{C}_i)^2 $$ $$ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2 $$ 3. **端到端训练** - 直接优化检测性能指标 - 单次前向传播完成预测(帧率45 FPS)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值