激光雷达扫描是重复好,还是非重复好?

本文讨论了非重复扫描激光雷达在自动驾驶领域的应用,通过对比机械式雷达,阐述了非重复扫描的优势,如更密集的点云和更高的上限潜力。尽管初期存在适应性问题,但通过算法调整和生态建设,如 Livox 的开源算法,非重复扫描已成为可行且高效的选择。实际案例表明,即使是高速物体检测,非重复扫描的点云模式也能提供良好的表现,拖影问题也可通过算法优化解决。
摘要由CSDN通过智能技术生成

自21世纪初激光雷达在DARPA无人车大赛上首次亮相以来,在过去十余年的自动驾驶行业发展浪潮中,被主流认可的激光雷达形态长期属于机械式激光雷达。然而在2020年初的CES展会上,Livox面向混合固态时代打造的浩界系列首款激光雷达Horizon横空出世,其7000元级的售价除了给市场提供一剂“激光雷达用得起、买得到”的强心针以外,也给自动驾驶感知算法领域带来了一个新事物:基于旋转棱镜扫描模式下的非重复点云形态。

从原理上讲,非重复扫描的点云效果是通过在激光光路上增加2-3组可旋转的棱镜,利用光的折射原理来实现控制光在现实空间中的扫描区间与位置。Livox基于对轴承电机、胶水和制造工艺等诸多环节的多年研发沉淀与创新突破,用相对较少的激光收发器件便实现了等效于传统高线束机械式雷达的性能效果。同时,通过精准控制电机转动模式,这套方案也能将点云集中分布在感知识别更关注的感兴趣扫描区域(ROI),让自动驾驶看得“更专注”。此外,基于非重复扫描的特性,随着时间的积分,激光雷达点云分辨率也会不断提升,叠加多帧效果换取更密集的点云也正逐步成为感知算法的另一种使用趋势。

Livox HAP点云仿真效果图

然而,即便拥有超高性价比的浩界系列自诞生之初便获得业界高度关注,但在过去两年多的时间里,我们也从部分算法感知用户身上了解到其对于使用非重复扫描激光雷达的顾虑:

非重复扫描点云到底能不能用?到底好不好用?

在浩界系列第二代产品HAP刚发布不久,我们也带着这个问题联系了几位在过去两年深度使用Livox激光雷达的自动驾驶算法工程师,希望来自真正用户的评价能够给业界不一样的评价角度与视野。

01
“向上无限&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值