✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文深入探讨了在加性高斯白噪声(AWGN)信道环境下,数字通信系统中五种典型调制技术的性能表现。这些调制技术包括二进制相移键控(BPSK)、正交相移键控(QPSK)、八进制相移键控(8PSK)、二进制频移键控(BFSK)以及16阶正交幅度调制(16QAM)。文章首先阐述了每种调制技术的基本原理,包括其信号星座图、调制与解调方法。接着,详细介绍了在AWGN通道中进行仿真的理论基础,包括AWGN信道模型、能量效率与频谱效率的概念,以及衡量系统性能的常用指标——误码率(BER)。文章的重点在于通过系统仿真,比较不同调制技术在相同信噪比(SNR)条件下的误码率性能。仿真结果将以误码率-信噪比曲线的形式呈现,直观地揭示各种调制技术的优劣势。最后,基于仿真结果,对不同调制技术在不同应用场景下的适用性进行了讨论和总结。本文旨在为数字通信系统的设计和优化提供理论依据和实践参考。
引言
数字通信作为现代信息传输的核心,其性能很大程度上取决于所采用的调制技术。调制是将数字基带信号转换为适合在传输介质上传输的模拟信号的过程,而解调则是其逆过程。在实际通信环境中,信号在传输过程中不可避免地会受到各种噪声和干扰的影响,其中,加性高斯白噪声(AWGN)是一种理想化但广泛存在的噪声模型,它具有功率谱密度均匀分布和幅度呈高斯分布的特点,对数字通信系统的性能具有显著影响。
选择合适的调制技术是平衡通信系统性能、带宽效率和实现复杂度的关键。不同的调制技术在相同信噪比条件下,其抗噪声能力和频谱效率各不相同。例如,相移键控(PSK)技术通过改变载波的相位来携带信息,而幅度调制(ASK)则通过改变载波的幅度,频率调制(FSK)则通过改变载波的频率。正交幅度调制(QAM)则结合了幅度和相位的变化来传输信息。
本文将聚焦于几种具有代表性的调制技术:BPSK、QPSK、8PSK、BFSK和16QAM。通过在AWGN信道上进行系统级仿真,我们将深入分析它们在误码率性能上的差异,并探讨这些差异背后的理论原因。这种基于仿真的研究方法,能够有效地评估不同调制技术在实际通信环境下的潜在表现,为通信系统的设计者提供宝贵的参考信息。
理论基础
2.1 AWGN信道模型
AWGN信道是通信系统中最基本的信道模型之一。
2.2 调制技术的基本原理
2.2.1 相移键控(PSK)
PSK技术通过改变载波的相位来表示不同的数字符号。
M-PSK的信号星座图由位于以原点为中心的圆周上的M个点组成,点之间的角度间隔为。增加M可以提高频谱效率(每符号携带更多比特),但会降低抗噪声能力,因为相邻星座点之间的距离减小,更容易受到噪声的干扰。
2.2.2 频移键控(FSK)
FSK技术通过改变载波的频率来表示不同的数字符号。对于M阶FSK(M-FSK),共有M个可能的频率。
- BFSK(Binary Frequency Shift Keying)
: M=2,使用两个不同的频率 f1f1 和 f2f2 来表示二进制的 0 和 1。每符号携带 1 比特信息。BFSK通常有两种实现方式:正交BFSK和非正交BFSK。在正交BFSK中,两个频率之间的差满足一定的条件,使得对应的基函数正交,简化了解调。
FSK技术的抗噪声能力通常比PSK弱,但其实现复杂度相对较低。
2.2.3 正交幅度调制(QAM)
QAM技术结合了幅度和相位的变化来表示数字符号。对于M阶QAM(M-QAM),共有M个不同的符号状态,每个状态代表 log2Mlog2M 个比特信息。
- 16QAM(16-ary Quadrature Amplitude Modulation)
: M=16,通过改变载波的幅度和相位来表示四位二进制信息。16QAM的星座图由16个点组成,这些点通常分布在一个二维平面上的网格中。
QAM技术在频谱效率方面优于纯粹的PSK和FSK,但对信道的幅度和相位失真更敏感。
2.3 误码率(BER)
误码率(Bit Error Rate,BER)是衡量数字通信系统性能最常用的指标,它定义为在接收端错误接收的比特数占总传输比特数的比例。对于不同的调制技术,在AWGN信道下,理论上的误码率可以根据其信号星座图和AWGN的统计特性推导得出。通常,误码率是信噪比的函数,随着信噪比的增加,误码率呈指数级下降。
仿真方法
本节将详细介绍在AWGN信道上模拟不同调制技术的仿真方法。整个仿真过程可以分解为以下几个主要步骤:
3.1 信号源生成
首先,需要生成一系列随机的二进制比特流作为待传输的信息。对于每种调制技术,需要将这些比特流分组,以形成调制符号。例如,对于BPSK,每比特形成一个符号;对于QPSK,每两比特形成一个符号;对于8PSK,每三比特形成一个符号;对于16QAM,每四比特形成一个符号;对于BFSK,每比特形成一个符号。
3.2 调制过程
根据选定的调制技术,将生成的符号映射到相应的调制波形。这涉及到将数字符号转换为模拟信号的参数(相位、频率或幅度和相位)。在仿真中,通常使用符号的复数表示,即星座点。例如,对于BPSK,符号 '0' 映射到星座点 +1,符号 '1' 映射到星座点 -1。
3.3解调过程
在接收端,对接收到的带有噪声的信号进行解调,将模拟信号转换回数字符号。解调通常采用最大似然(ML)或最小距离判决的方法。对于PSK和QAM,解调器根据接收信号在星座图中的位置,将其判决到最近的星座点。对于BFSK,解调器通过检测哪个频率的能量更大来进行判决。
3.4 误码率计算
将解调得到的符号与原始发送的符号进行比较,统计出错的比特数,并计算误码率。对于M阶调制,一个符号错误可能导致多个比特错误,因此需要将符号错误率转换为比特错误率。对于采用格雷码映射的调制方案(如QPSK、8PSK和16QAM),相邻星座点之间的比特差异最小,这有助于降低误码率。
3.5仿真迭代与结果统计
为了获得准确的误码率曲线,需要在不同信噪比条件下重复上述仿真过程。对于每个信噪比点,传输足够多的比特数,以获得具有统计意义的误码率。通常,仿真需要传输大量的比特,特别是在高信噪比下,以观察到足够数量的错误。
仿真结果与分析
本节将呈现通过上述仿真方法获得的误码率-信噪比曲线,并对结果进行分析。Eb/N0(以分贝dB为单位)为横轴,误码率(BER)为纵轴,绘制成对数坐标图。这将直观地展示不同调制技术在不同信道质量下的误码率性能。
4.1果分析
基于仿真曲线,我们可以对不同调制技术的性能进行详细分析:
- 频谱效率
: 频谱效率衡量了单位带宽内传输的信息速率,通常以比特/秒/赫兹(bps/Hz)为单位。对于M阶调制,每个符号携带 log2M 比特信息。在相同的符号速率下,调制阶数M越高,频谱效率越高。因此,16QAM具有最高的频谱效率(每符号4比特),其次是8PSK(每符号3比特),QPSK(每符号2比特),BPSK和BFSK(每符号1比特)。频谱效率的提高通常是以牺牲抗噪声能力为代价的。
- 实现复杂度
: 不同的调制技术在实现复杂性上也有所不同。通常,低阶调制技术(如BPSK、BFSK)的调制解调器实现相对简单,而高阶调制技术(如QAM)需要更复杂的电路和算法。
4.2 理论误码率曲线的比较
将仿真获得的误码率曲线与理论推导的AWGN信道下的误码率曲线进行比较,可以验证仿真方法的准确性。理论误码率通常使用误差函数(erf)或Q函数来表示,并与调制技术、星座图以及 相关。理想情况下,仿真结果会非常接近理论曲线,特别是在高信噪比下。在低信噪比下,由于仿真比特数的限制和判决误差,仿真结果可能略高于理论值。
讨论与结论
通过在AWGN通道上模拟不同的调制技术,我们清晰地看到了不同技术在误码率性能上的权衡。
- BPSK
: 作为最简单的PSK技术,具有最优的抗噪声能力,但频谱效率最低。适用于对误码率要求极高,但带宽资源不紧张的场景,例如卫星通信的控制信道。
- BFSK
: 实现简单,抗噪声能力尚可,但频谱效率较低。适用于对成本敏感,且对带宽要求不高的应用,例如早期的低速数据传输系统。
- QPSK
: 在频谱效率和抗噪声能力之间取得了较好的平衡,是许多无线通信系统(如WCDMA、LTE的部分模式)中广泛采用的调制技术。
- 8PSK
: 在QPSK的基础上提高了频谱效率,但抗噪声能力有所下降。适用于对频谱效率有较高要求,同时信道条件较好的场景。
- 16QAM
: 具有较高的频谱效率,适用于对带宽利用率要求极高的场景,例如数字电视、Wi-Fi和LTE的高速数据传输。然而,它对信道质量要求较高,更容易受到噪声和干扰的影响。
⛳️ 运行结果
🔗 参考文献
[1] 丁梦川.基于流星余迹信道下的TTCM编译码技术研究[D].中国电子科技集团公司电子科学研究院,2023.
[2] 胡嫦春.Turbo码在LTE系统中的应用及FPGA实现[D].武汉理工大学,2012.DOI:10.7666/d.y2098944.
[3] 李白萍,李彩伟.IEEE802.16d系统中自适应调制编码技术的应用研究[J].通信技术, 2009(5):3.DOI:10.3969/j.issn.1002-0802.2009.05.010.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇