✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光伏发电作为一种清洁、可再生能源,在能源结构转型中扮演着重要角色。准确预测光伏发电量对于电网调度、能源管理和经济效益具有重要意义。近年来,基于深度学习的回归预测方法在光伏发电预测方面取得了显著进展。本文提出了一种基于Transformer-LSTM的模型,将Transformer的全局特征提取能力与LSTM的时间序列记忆能力相结合,用于光伏发电量回归预测。通过对真实光伏发电数据进行实验验证,结果表明该模型在预测精度和稳定性方面均优于传统方法。
**关键词:**光伏发电预测,Transformer,LSTM,深度学习,MATLAB
1. 概述
光伏发电作为一种清洁、可再生能源,近年来发展迅速,已成为全球能源结构转型的重要组成部分。准确预测光伏发电量对于电网调度、能源管理和经济效益至关重要。例如,准确预测光伏发电量可以帮助电网运营商提前规划和调度电力资源,提高电网稳定性和可靠性;同时,光伏发电量的预测也可以为电力市场提供价格参考,促进新能源交易和投资。
传统的预测方法主要包括统计方法和机器学习方法。统计方法通常依赖于历史数据的规律性,如ARIMA模型,其预测效果受数据趋势和季节性影响较大。机器学习方法近年来得到了广泛应用,如支持向量机(SVM)和神经网络等,它们能够学习数据中的非线性关系,但对于处理时间序列数据存在局限性。
近年来,深度学习技术在各个领域取得了重大突破,其强大的学习能力和非线性表达能力为光伏发电预测提供了新的思路。Transformer和LSTM是两种常用的深度学习模型,它们分别擅长于处理序列数据的全局特征和时间序列特征。将这两种模型结合起来,可以更好地捕捉光伏发电数据中的复杂关系,提高预测精度。
2. 模型方法
本文提出了一种基于Transformer-LSTM的模型用于光伏发电量回归预测。模型结构如图1所示。
图1 Transformer-LSTM模型结构图
该模型主要包括以下几个部分:
2.1 输入数据
模型的输入数据为历史光伏发电量数据,包括时间、功率等信息。
2.2 Transformer模块
Transformer模块主要用于提取输入数据的全局特征。它由多个编码器层组成,每个编码器层包含自注意力机制和前馈神经网络。自注意力机制能够捕捉到输入序列中任意两个位置之间的关系,而前馈神经网络则进一步提取特征。
2.3 LSTM模块
LSTM模块用于捕捉输入数据的时间序列特征。它由多个LSTM单元组成,每个单元能够记忆之前的输入信息,并根据当前输入进行预测。
2.4 输出层
输出层将Transformer和LSTM模块的输出结果进行融合,并最终输出预测的光伏发电量。
3. 模型训练
模型的训练过程主要包括以下步骤:
-
**数据预处理:**对输入数据进行归一化处理,将其映射到0到1之间。
-
**模型初始化:**随机初始化模型参数。
-
**损失函数:**使用均方误差作为损失函数。
-
**优化器:**使用Adam优化器更新模型参数。
-
**训练:**将训练数据输入模型,并根据损失函数更新模型参数。
4. 实验结果与分析
从实验结果可以看出,Transformer-LSTM模型在预测精度方面明显优于其他方法,特别是其MAE和RMSE指标都达到了最低。这表明该模型能够有效地捕捉光伏发电数据中的复杂关系,并实现更加准确的预测。
5. 总结与展望
本文提出了一种基于Transformer-LSTM的模型,用于光伏发电量回归预测。该模型利用了Transformer的全局特征提取能力和LSTM的时间序列记忆能力,在预测精度和稳定性方面取得了良好的效果。未来的研究方向包括:
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类