负荷预测 | Matlab基于Transformer-LSTM多变量时间序列多步预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

光伏发电作为一种清洁、可再生能源,在能源结构转型中扮演着重要角色。准确预测光伏发电量对于电网调度、能源管理和经济效益具有重要意义。近年来,基于深度学习的回归预测方法在光伏发电预测方面取得了显著进展。本文提出了一种基于Transformer-LSTM的模型,将Transformer的全局特征提取能力与LSTM的时间序列记忆能力相结合,用于光伏发电量回归预测。通过对真实光伏发电数据进行实验验证,结果表明该模型在预测精度和稳定性方面均优于传统方法。

**关键词:**光伏发电预测,Transformer,LSTM,深度学习,MATLAB

1. 概述

光伏发电作为一种清洁、可再生能源,近年来发展迅速,已成为全球能源结构转型的重要组成部分。准确预测光伏发电量对于电网调度、能源管理和经济效益至关重要。例如,准确预测光伏发电量可以帮助电网运营商提前规划和调度电力资源,提高电网稳定性和可靠性;同时,光伏发电量的预测也可以为电力市场提供价格参考,促进新能源交易和投资。

传统的预测方法主要包括统计方法和机器学习方法。统计方法通常依赖于历史数据的规律性,如ARIMA模型,其预测效果受数据趋势和季节性影响较大。机器学习方法近年来得到了广泛应用,如支持向量机(SVM)和神经网络等,它们能够学习数据中的非线性关系,但对于处理时间序列数据存在局限性。

近年来,深度学习技术在各个领域取得了重大突破,其强大的学习能力和非线性表达能力为光伏发电预测提供了新的思路。Transformer和LSTM是两种常用的深度学习模型,它们分别擅长于处理序列数据的全局特征和时间序列特征。将这两种模型结合起来,可以更好地捕捉光伏发电数据中的复杂关系,提高预测精度。

2. 模型方法

本文提出了一种基于Transformer-LSTM的模型用于光伏发电量回归预测。模型结构如图1所示。

图1 Transformer-LSTM模型结构图

该模型主要包括以下几个部分:

2.1 输入数据

模型的输入数据为历史光伏发电量数据,包括时间、功率等信息。

2.2 Transformer模块

Transformer模块主要用于提取输入数据的全局特征。它由多个编码器层组成,每个编码器层包含自注意力机制和前馈神经网络。自注意力机制能够捕捉到输入序列中任意两个位置之间的关系,而前馈神经网络则进一步提取特征。

2.3 LSTM模块

LSTM模块用于捕捉输入数据的时间序列特征。它由多个LSTM单元组成,每个单元能够记忆之前的输入信息,并根据当前输入进行预测。

2.4 输出层

输出层将Transformer和LSTM模块的输出结果进行融合,并最终输出预测的光伏发电量。

3. 模型训练

模型的训练过程主要包括以下步骤:

  • **数据预处理:**对输入数据进行归一化处理,将其映射到0到1之间。

  • **模型初始化:**随机初始化模型参数。

  • **损失函数:**使用均方误差作为损失函数。

  • **优化器:**使用Adam优化器更新模型参数。

  • **训练:**将训练数据输入模型,并根据损失函数更新模型参数。

4. 实验结果与分析

从实验结果可以看出,Transformer-LSTM模型在预测精度方面明显优于其他方法,特别是其MAE和RMSE指标都达到了最低。这表明该模型能够有效地捕捉光伏发电数据中的复杂关系,并实现更加准确的预测。

5. 总结与展望

本文提出了一种基于Transformer-LSTM的模型,用于光伏发电量回归预测。该模型利用了Transformer的全局特征提取能力和LSTM的时间序列记忆能力,在预测精度和稳定性方面取得了良好的效果。未来的研究方向包括:

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值