✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
连续体机器人因其高灵活性和适应性,在医疗、制造和探索等领域拥有广泛的应用前景。章鱼臂因其独特的结构和运动方式,一直是连续体机器人研究的灵感来源。本项目旨在建立一个基于章鱼臂的连续体机器人运动学模型,并设计相应的控制策略,以实现机器人的精确运动控制。
模型概述
为了模拟章鱼臂的复杂运动,我们提出了一个离散的多段模型,其中每一段都被建模为一个拥有六自由度的并联机器人(Gough-Stewart平台)。该模型的创新之处在于它能够再现章鱼臂的所有典型运动,包括伸长、缩短、弯曲,尤其是扭转运动,而传统的模型通常无法实现扭转。同时,我们的模型还确保了章鱼臂的体积恒定这一重要特性。
逆运动学解算与控制
由于章鱼臂的逆运动学解算问题存在着大量的解,传统的数值方法难以在实时应用中实现。为了克服这一挑战,我们借鉴了章鱼臂独特的去中心化神经系统,提出了一种新的解算方法。具体而言,我们使用伪逆雅可比矩阵方法来设计一个运动学控制器,使连续体机器人的末端能够跟踪参考轨迹。
仿真评估
我们针对一系列三维参考轨迹进行了仿真实验,包括直线、椭圆、正弦曲线以及观察到的章鱼臂的真实运动轨迹。仿真结果表明,在所有轨迹中,模拟的连续体机器人的末端都能够以小于机器人初始长度0.3%的均方根误差跟踪参考轨迹,验证了我们提出的模型和控制方法的有效性。
结论与展望
本项目成功地构建了一个能够模拟章鱼臂复杂运动的连续体机器人模型,并设计了相应的控制策略。仿真结果表明,该模型和控制方法能够有效地控制机器人的运动,具有良好的精度和鲁棒性。未来,我们将进一步研究更复杂的模型和控制算法,以提升机器人的运动性能,并探索其在实际应用中的潜力。
⛳️ 运行结果
🔗 参考文献
@article{lafmejani2020kinematic, title={Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot}, author={Lafmejani, Amir Salimi and Doroudchi, Azadeh and Farivarnejad, Hamed and He, Ximin and Aukes, Daniel and Peet, Matthew M and Marvi, Hamidreza and Fisher, Rebecca E and Berman, Spring}, journal={IEEE Robotics and Automation Letters}, volume={5}, number={2}, pages={3460--3467}, year={2020}, publisher={IEEE}}
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类