【控制】基于章鱼启发的连续机器人轨迹跟踪控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

连续体机器人因其高灵活性和适应性,在医疗、制造和探索等领域拥有广泛的应用前景。章鱼臂因其独特的结构和运动方式,一直是连续体机器人研究的灵感来源。本项目旨在建立一个基于章鱼臂的连续体机器人运动学模型,并设计相应的控制策略,以实现机器人的精确运动控制。

模型概述

为了模拟章鱼臂的复杂运动,我们提出了一个离散的多段模型,其中每一段都被建模为一个拥有六自由度的并联机器人(Gough-Stewart平台)。该模型的创新之处在于它能够再现章鱼臂的所有典型运动,包括伸长、缩短、弯曲,尤其是扭转运动,而传统的模型通常无法实现扭转。同时,我们的模型还确保了章鱼臂的体积恒定这一重要特性。

逆运动学解算与控制

由于章鱼臂的逆运动学解算问题存在着大量的解,传统的数值方法难以在实时应用中实现。为了克服这一挑战,我们借鉴了章鱼臂独特的去中心化神经系统,提出了一种新的解算方法。具体而言,我们使用伪逆雅可比矩阵方法来设计一个运动学控制器,使连续体机器人的末端能够跟踪参考轨迹。

仿真评估

我们针对一系列三维参考轨迹进行了仿真实验,包括直线、椭圆、正弦曲线以及观察到的章鱼臂的真实运动轨迹。仿真结果表明,在所有轨迹中,模拟的连续体机器人的末端都能够以小于机器人初始长度0.3%的均方根误差跟踪参考轨迹,验证了我们提出的模型和控制方法的有效性。

结论与展望

本项目成功地构建了一个能够模拟章鱼臂复杂运动的连续体机器人模型,并设计了相应的控制策略。仿真结果表明,该模型和控制方法能够有效地控制机器人的运动,具有良好的精度和鲁棒性。未来,我们将进一步研究更复杂的模型和控制算法,以提升机器人的运动性能,并探索其在实际应用中的潜力。

⛳️ 运行结果

🔗 参考文献

@article{lafmejani2020kinematic,  title={Kinematic modeling and trajectory tracking control of an octopus-inspired hyper-redundant robot},  author={Lafmejani, Amir Salimi and Doroudchi, Azadeh and Farivarnejad, Hamed and He, Ximin and Aukes, Daniel and Peet, Matthew M and Marvi, Hamidreza and Fisher, Rebecca E and Berman, Spring},  journal={IEEE Robotics and Automation Letters},  volume={5},  number={2},  pages={3460--3467},  year={2020},  publisher={IEEE}}

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值