【路径规划】基于Dijkstra、A和动态规划的移动机器人路径规划附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

移动机器人的路径规划是机器人领域的核心问题之一,其目标是在给定的环境中找到一条从起点到终点的最优或可行路径,同时避开障碍物并满足特定的约束条件。路径规划算法的性能直接影响着机器人的自主导航能力和作业效率。本文将深入探讨三种经典的路径规划算法:Dijkstra算法、A*算法以及动态规划算法,并分析它们在移动机器人路径规划中的应用、优缺点以及适用场景。

一、Dijkstra算法:全局最优的代价搜索

Dijkstra算法是一种经典的图搜索算法,由荷兰计算机科学家Edsger W. Dijkstra于1959年提出。该算法旨在寻找图中两个节点之间的最短路径,它通过维护一个优先队列,不断扩展从起点开始的已知最短路径,直到到达目标节点或遍历整个图。

在移动机器人路径规划中,Dijkstra算法通常应用于静态环境下的全局路径规划。首先,需要将环境离散化为图结构,例如栅格地图或拓扑地图,其中节点代表机器人可以到达的位置,边代表相邻节点之间的可达性。边的权重可以根据实际情况设定,例如距离、时间或能量消耗。

Dijkstra算法的核心思想是贪心策略,它保证每次从优先队列中选择的节点都是当前已知路径代价最小的节点。具体步骤如下:

  1. 初始化: 将起点加入优先队列,设置其代价为0,并将所有其他节点的代价初始化为无穷大。

  2. 循环迭代:

    • 计算从起点经过u到达v的代价,记为d(v) = d(u) + cost(u, v),其中cost(u, v)表示从u到v的边的权重。

    • 如果d(v) < v当前已知的代价,则更新v的代价为d(v),并将v加入优先队列。

    • 从优先队列中取出代价最小的节点u。

    • 对于节点u的每个相邻节点v:

  3. 终止条件: 当目标节点从优先队列中取出时,算法终止。此时,可以从目标节点回溯到起点,得到最短路径。

Dijkstra算法的优点:

  • 完备性: 如果存在从起点到终点的路径,Dijkstra算法保证能够找到。

  • 最优性: Dijkstra算法能够找到代价最小的路径。

Dijkstra算法的缺点:

  • 效率低: Dijkstra算法需要遍历整个图,因此在大型地图上的计算量较大,效率较低。

  • 无方向性: Dijkstra算法向所有方向进行搜索,而没有利用目标节点的引导信息,导致搜索范围过大。

二、A*算法:启发式搜索的效率提升

A算法是一种启发式搜索算法,是对Dijkstra算法的改进。它通过引入启发式函数来引导搜索方向,从而提高搜索效率。启发式函数估计从当前节点到目标节点的代价,通常用h(n)表示。A算法使用一个评估函数f(n)来评估节点的优先级,f(n) = g(n) + h(n),其中g(n)是从起点到当前节点的实际代价。

A算法的步骤与Dijkstra算法类似,但其优先队列的排序依据是评估函数f(n)的值。A算法会优先扩展评估函数值最小的节点,从而更快地找到目标节点。

启发式函数的选择:

启发式函数的选择对A*算法的性能至关重要。一个好的启发式函数应该满足以下条件:

  • 可接受性(Admissible): 启发式函数估计的代价必须小于或等于实际代价,即h(n) ≤ h*(n),其中h*(n)是从当前节点到目标节点的实际代价。如果启发式函数是可接受的,A*算法保证能够找到最优路径。

  • 一致性(Consistent): 对于任意节点u和v,满足h(u) ≤ cost(u, v) + h(v)。如果启发式函数是一致的,A*算法不会重复访问已经扩展过的节点,从而提高搜索效率。

常见的启发式函数包括:

  • 曼哈顿距离(Manhattan Distance): 适用于允许机器人只能沿水平或垂直方向移动的场景。

  • 欧几里得距离(Euclidean Distance): 适用于允许机器人沿任意方向移动的场景。

  • 对角线距离(Diagonal Distance): 适用于允许机器人沿水平、垂直和对角线方向移动的场景。

A*算法的优点:

  • 效率高: 通过启发式函数的引导,A*算法可以更快地找到目标节点,效率比Dijkstra算法更高。

  • 完备性: 如果启发式函数是可接受的,A*算法保证能够找到最优路径。

  • 灵活性: A*算法可以通过调整启发式函数来适应不同的环境和任务需求。

A*算法的缺点:

  • 启发式函数的设计: 启发式函数的设计需要根据具体情况进行调整,不恰当的启发式函数可能会导致算法性能下降。

  • 内存消耗: A*算法需要维护一个开放列表和一个关闭列表,存储已经访问过的节点,因此在大型地图上的内存消耗较大。

三、动态规划算法:全局最优的递推求解

动态规划算法是一种求解优化问题的常用方法,它通过将问题分解为一系列子问题,并依次求解子问题,从而得到全局最优解。动态规划算法适用于具有最优子结构性质的问题,即问题的最优解包含其子问题的最优解。

在移动机器人路径规划中,动态规划算法可以应用于解决静态环境下全局最优路径规划问题。与Dijkstra算法和A*算法不同,动态规划算法通常以栅格地图作为输入,并通过递推的方式计算每个栅格的最优代价。

动态规划算法的核心思想是将地图上的每个栅格视为一个状态,并将从起点到该栅格的最优代价定义为该状态的值。算法从目标栅格开始,逆向递推计算每个栅格的值,直到到达起点栅格。

动态规划算法的步骤:

  1. 初始化: 将目标栅格的代价设置为0,并将所有其他栅格的代价初始化为无穷大。

  2. 逆向递推:

    • 计算从该栅格到其相邻栅格的代价,并更新相邻栅格的代价。

    • cost(i,j) = min{cost(i+1,j) + C(i,j, i+1,j), cost(i-1,j) + C(i,j, i-1,j), cost(i,j+1) + C(i,j, i,j+1), cost(i,j-1) + C(i,j, i,j-1)}

    • 其中C(i,j, x,y)表示从(i,j)到(x,y)的代价,例如距离或时间。

    • 从目标栅格开始,遍历整个地图。

    • 对于每个栅格(i, j):

  3. 回溯: 从起点栅格开始,选择代价最小的相邻栅格作为下一步的移动方向,直到到达目标栅格。

动态规划算法的优点:

  • 全局最优性: 动态规划算法能够找到全局最优路径。

  • 简单易懂: 动态规划算法的原理相对简单,易于实现。

动态规划算法的缺点:

  • 计算量大: 动态规划算法需要遍历整个地图,因此在大型地图上的计算量较大。

  • 内存消耗高: 动态规划算法需要存储每个栅格的代价,因此内存消耗较高。

  • 离散化误差: 动态规划算法通常应用于栅格地图,离散化过程可能会引入误差。

四、算法对比与适用场景

表格

算法优点缺点适用场景
Dijkstra算法完备性,最优性效率低,无方向性静态环境下的全局路径规划,地图规模较小,对路径代价要求严格。
A*算法效率高,完备性,灵活性启发式函数的设计,内存消耗静态环境下的全局路径规划,地图规模较大,需要权衡效率和路径代价。
动态规划算法全局最优性,简单易懂计算量大,内存消耗高,离散化误差静态环境下的全局路径规划,栅格地图,对路径代价要求严格,且允许较大的计算和内存消耗。

五、总结与展望

Dijkstra算法、A算法和动态规划算法是移动机器人路径规划领域的三种经典算法,它们各有优缺点,适用于不同的环境和任务需求。Dijkstra算法保证全局最优,但效率较低;A算法通过启发式搜索提高效率,但需要精心设计启发式函数;动态规划算法能够找到全局最优路径,但计算量和内存消耗较大。

未来的研究方向包括:

  • 混合算法: 将不同的算法结合起来,例如将A算法与动态规划算法结合,利用A算法的快速搜索能力和动态规划算法的全局优化能力。

  • 增量式算法: 针对动态环境下的路径规划,开发增量式算法,能够根据环境变化快速更新路径。

  • 学习型算法: 利用机器学习技术,例如深度学习,训练路径规划模型,从而提高算法的性能和适应性。

⛳️ 运行结果

🔗 参考文献

[1] 唐振民,赵春霞,杨静宇,等.基于动态规划思想的多机器人路径规划[J].南京理工大学学报, 2003, 27(5):6.DOI:10.3969/j.issn.1005-9830.2003.05.026.

[2] 杜安红.障碍环境中路径规划算法研究[D].中国地质大学(武汉)[2025-02-13].DOI:CNKI:CDMD:2.2005.041149.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值