【光学】基于matlab的二维弹性波正演

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

二维弹性波正演模拟在地球物理勘探、地震工程和材料科学等领域扮演着至关重要的角色。它通过求解弹性波动方程,模拟地震波或超声波等在二维介质中的传播过程,从而为地下结构成像、工程结构健康监测和材料特性评估提供理论基础和数据支撑。本文将深入探讨二维弹性波正演的理论基础,详细介绍常用的数值方法,并展望其在不同领域的应用前景。

一、理论基础:弹性波动方程

二维弹性波正演的核心是求解弹性波动方程。在均匀各向同性介质中,该方程可以表示为:

ρ(x,z) ∂²u/∂t² = (λ(x,z) + μ(x,z)) ∂/∂x (∂ux/∂x + ∂uz/∂z) + μ(x,z) (∂²ux/∂x² + ∂²ux/∂z²)

ρ(x,z) ∂²w/∂t² = (λ(x,z) + μ(x,z)) ∂/∂z (∂ux/∂x + ∂uz/∂z) + μ(x,z) (∂²uz/∂x² + ∂²uz/∂z²) 

其中:

  • u(x,z,t) 和 w(x,z,t) 分别代表 x 和 z 方向的位移分量;

  • ρ(x,z) 是介质的密度;

  • λ(x,z) 和 μ(x,z) 是拉梅常数,它们与纵波速度 Vp(x,z) 和横波速度 Vs(x,z) 存在以下关系:

    Vp = sqrt((λ + 2μ) / ρ)
    Vs = sqrt(μ / ρ) 

对于非均匀介质,ρ(x,z)λ(x,z) 和 μ(x,z) 是空间坐标的函数,方程组的求解更加复杂。弹性波动方程描述了介质中质点之间的相互作用以及波的传播过程,其解包含了所有可能的弹性波信息,包括纵波 (P 波)、横波 (S 波) 以及它们在介质中的反射、折射和透射现象。

在实际应用中,还需要考虑以下因素:

  • 边界条件: 自由表面、吸收边界和周期性边界等不同的边界条件会影响波的传播行为。自由表面允许波的反射,吸收边界可以减少边界反射引起的数值噪声,周期性边界则适用于模拟无限介质。

  • 初始条件: 初始条件描述了波场在初始时刻的状态,例如初始位移或速度。

  • 震源: 震源是波场能量的来源,它可以是爆炸震源、点力震源或者剪切力震源等,不同的震源类型会产生不同的波场。

二、数值方法:有限差分法、有限元法和伪谱法

由于弹性波动方程通常没有解析解,因此需要使用数值方法进行求解。常用的数值方法包括有限差分法 (FDM)、有限元法 (FEM) 和伪谱法 (PSM)。

1. 有限差分法 (FDM):

FDM 是一种基于泰勒展开的离散化方法,它将空间和时间域划分为网格,并用差分公式来近似弹性波动方程中的导数。FDM 的优点是实现简单、计算效率高,适用于求解大规模问题。然而,FDM 的精度受网格大小的限制,需要较小的网格才能保证精度。

  • 时间离散: 常用的时间离散方案包括显式格式、隐式格式和显隐式格式。显式格式计算简单,但对时间步长有限制,需要满足 Courant-Friedrichs-Lewy (CFL) 条件以保证稳定性。隐式格式稳定性好,但计算量大。显隐式格式结合了显式和隐式格式的优点,可以在保证稳定性的前提下提高计算效率。

  • 空间离散: 常用的空间离散方案包括中心差分、前向差分和后向差分。中心差分精度高,但容易产生数值频散。高阶差分格式可以提高精度,但计算量也相应增加。

2. 有限元法 (FEM):

FEM 将计算区域划分为有限个单元,并在每个单元内用基函数来近似位移场。FEM 通过求解一个弱形式的弹性波动方程,得到位移场在单元节点上的值。FEM 的优点是可以处理复杂的几何形状和非均匀介质,适用于求解复杂问题。然而,FEM 的计算量通常比 FDM 大。

⛳️ 运行结果

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值