【电力系统】基于主从博弈的综合能源服务商动态定价策略研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要: 随着能源转型和电力市场改革的深入,综合能源服务商(Integrated Energy Service Provider, IESP)在推动能源效率提升、优化能源消费结构以及促进可再生能源消纳方面扮演着日益重要的角色。合理的定价策略是IESP实现盈利和吸引用户的关键。本文以电力系统为背景,深入研究了基于主从博弈的IESP动态定价策略。通过建立考虑用户侧需求响应和IESP运营成本的主从博弈模型,分析IESP作为领导者如何根据市场需求和竞争对手策略制定动态定价方案,从而实现自身利润最大化。并探讨了不同市场环境和竞争格局下,影响定价策略的关键因素,为IESP制定有效的定价方案提供理论指导。

关键词: 综合能源服务商;主从博弈;动态定价;需求响应;电力市场

1. 引言

当前,全球能源格局正在经历深刻变革。化石能源日益枯竭、环境污染日益严重以及能源安全日益受到重视,都驱动着能源系统向清洁化、低碳化、智能化的方向发展。在此背景下,综合能源服务应运而生,并迅速成为推动能源转型的重要力量。综合能源服务是指为用户提供包括能源供应、能源管理、节能改造、可再生能源接入等在内的全方位、一体化能源解决方案。与传统的能源供应模式相比,综合能源服务更加注重用户的个性化需求,并致力于提高能源利用效率和降低能源成本。

综合能源服务商(IESP)作为综合能源服务的主要提供者,其商业模式和盈利模式直接影响着综合能源服务的推广和发展。合理的定价策略是IESP实现盈利和吸引用户的关键。然而,传统的定价模式往往无法有效应对电力市场动态变化的需求,以及用户日益增长的个性化需求。因此,研究适用于IESP的动态定价策略,具有重要的理论意义和实践价值。

本文聚焦于电力系统,以主从博弈理论为基础,研究IESP的动态定价策略。主从博弈是一种Stackelberg博弈,它模拟了领导者(IESP)和追随者(用户)之间的决策互动关系。IESP作为领导者,首先根据市场信息和竞争对手策略制定定价方案;用户作为追随者,根据IESP的定价方案做出用电决策。通过构建并求解主从博弈模型,可以分析IESP在不同市场环境下的最优定价策略,从而为IESP制定合理的定价方案提供理论依据。

2. 文献综述

近年来,国内外学者对IESP的定价策略进行了广泛研究。这些研究主要集中在以下几个方面:

  • 基于成本的定价方法:

     这类方法主要考虑IESP的运营成本,包括能源采购成本、维护成本和管理成本等。研究人员通过成本加成、边际成本定价等方法,为IESP制定合理的定价方案。例如,[1]研究了考虑不同能源供应方式的IESP成本定价模型,为IESP制定成本导向的定价策略提供了参考。

  • 基于市场的定价方法:

     这类方法主要考虑电力市场的供需关系和竞争格局,通过市场价格预测和竞价博弈等方法,为IESP制定具有竞争力的定价方案。例如,[2]提出了基于双层优化模型的IESP定价策略,上层模型考虑市场竞争,下层模型考虑用户需求响应。

  • 基于需求的定价方法:

     这类方法主要考虑用户的用电需求和偏好,通过需求响应激励、分时电价等方法,引导用户调整用电行为,从而实现能源效率提升和降低用电成本。例如,[3]研究了基于用户分群的需求响应定价策略,为IESP针对不同用户群体提供个性化服务提供了思路。

  • 基于博弈论的定价方法:

     博弈论为研究IESP定价问题提供了一个有效的框架。学者们利用合作博弈、非合作博弈等方法,分析IESP与用户、IESP与IESP之间的互动关系,从而为IESP制定最优定价策略。例如,[4]研究了基于合作博弈的IESP联盟定价策略,为IESP通过联盟的方式提高市场竞争力提供了理论依据。

然而,现有研究仍存在一些不足:

  • 缺乏动态性:

     大部分研究集中于静态定价策略,忽略了电力市场动态变化的需求和IESP运营成本的实时变化。

  • 简化用户行为:

     许多研究对用户需求响应行为进行了简化,未能充分考虑用户对不同定价方案的敏感度。

  • 缺乏对竞争对手的考量:

     部分研究忽略了市场竞争的影响,未能充分考虑竞争对手的定价策略对IESP自身定价策略的影响。

因此,本文将以主从博弈理论为基础,构建考虑用户侧需求响应和IESP运营成本的动态定价模型,分析IESP作为领导者如何根据市场需求和竞争对手策略制定动态定价方案,从而弥补现有研究的不足。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值