✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在复杂的工程系统中,对非线性受控动力系统的精确预测和有效控制是实现高性能的关键挑战。传统的基于线性化或局部近似的方法在处理强非线性和大范围操作时往往面临精度下降和稳定性问题。近年来,Koopman算子理论为分析非线性系统提供了一种全新的视角,它通过将有限维非线性动力学提升到无限维线性空间,实现了对非线性系统的全局线性表示。本文深入探讨了如何将Koopman理论应用于模型预测控制(MPC)框架,构建面向非线性系统的线性预测器,并在此基础上发展出Koopman模型预测控制(Koopman MPC)。文章详细阐述了Koopman算子的基本概念、其与非线性系统动力学的关系、如何通过数据驱动或基函数选择来近似有限维的Koopman算子表示,以及如何利用这一线性表示进行系统状态预测。进一步,本文分析了Koopman模型预测MPC的控制策略构建,包括成本函数设计、约束处理以及在线求解优化问题的方法。通过对现有研究成果的梳理和分析,本文阐明了Koopman MPC在解决非线性系统控制问题上的优势,并讨论了其面临的挑战和未来的发展方向。
关键词:Koopman算子, 模型预测控制, 非线性系统, 状态估计, 预测控制, 数据驱动, 基函数
1. 引言
现代工业、航空航天、机器人和生物医学等领域的系统往往表现出复杂的非线性动力学特性。对这些系统进行精确建模和有效控制是实现其预期功能和性能的前提。传统控制方法,如PID控制,依赖于简单的反馈机制,难以处理强非线性和耦合性。基于模型的控制方法,特别是模型预测控制(MPC),凭借其处理多输入多输出(MIMO)系统、系统约束以及优化控制性能的能力,在工业界得到了广泛应用。MPC的核心在于利用系统模型预测系统未来的状态,并在此基础上求解一个优化问题来确定当前的控制输入,以在预测时域内最优地满足控制目标和约束条件。
然而,传统的MPC通常依赖于线性系统模型,或通过在工作点附近进行线性化来处理非线性系统。这种局部线性化方法在系统运行范围较小时尚可接受,但在系统存在大范围变化或强非线性时,其预测精度会显著下降,甚至可能导致闭环系统的不稳定。为了应对非线性系统的挑战,研究人员发展了非线性模型预测控制(NMPC)。NMPC直接使用非线性系统模型进行预测,并通过求解非线性优化问题来确定控制输入。尽管NMPC理论上能够实现更好的控制性能,但求解高维非线性优化问题计算量巨大,尤其是在线实时应用时,其计算效率和收敛性是一个重要的挑战。此外,准确的非线性模型往往难以获得,对模型的依赖性也限制了NMPC的应用范围。
近年来,Koopman算子理论为分析非线性系统提供了一种全新的视角。Koopman算子将有限维非线性动力学提升到无限维线性空间,在该空间中,非线性系统的状态演化可以由一个无穷维的线性算子描述。虽然这个无穷维算子本身难以直接处理,但通过选择一组合适的观测函数(observable functions),可以将有限维状态空间上的非线性动力学映射到由这些观测函数生成的函数空间,并在该空间中寻找Koopman算子的有限维近似表示。这种有限维线性表示为非线性系统的预测和控制提供了一条新的途径。
本文旨在探讨如何将Koopman理论应用于模型预测控制框架,构建面向非线性受控动力系统的线性预测器——Koopman模型预测MPC。通过利用Koopman算子提供的线性预测能力,Koopman MPC有望结合MPC处理约束和优化性能的优势,同时克服传统线性MPC在处理非线性系统时的局限性,以及NMPC在计算效率上的挑战。
2. Koopman算子理论基础
Koopman算子理论源于动力系统理论,由B. O. Koopman于1931年首次提出。其核心思想是将有限维状态空间上的非线性动力学转化为无穷维函数空间上的线性算子作用。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类