【雷达】基于FMCW雷达探测的运动人体回波信号Matlab仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、FMCW 雷达基本原理

调频连续波(FMCW)雷达是一种常用的雷达体制,其工作原理基于发射连续的调频信号。通常,FMCW 雷达发射的信号频率会随时间呈线性变化,常见的是线性调频(LFM)信号。

假设发射信号的瞬时频率 <inline_LaTeX_Formula>f_t (t)<\inline_LaTeX_Formula > 随时间 < inline_LaTeX_Formula>t<\inline_LaTeX_Formula > 的变化关系为:
<display_LaTeX_Formula>f_t (t)=f_0 + \frac {B}{T} t<\display_LaTeX_Formula>
其中,<inline_LaTeX_Formula>f_0<\inline_LaTeX_Formula > 是起始频率,<inline_LaTeX_Formula>B<\inline_LaTeX_Formula > 是调频带宽,<inline_LaTeX_Formula>T<\inline_LaTeX_Formula > 是调频周期。

发射信号 <inline_LaTeX_Formula>s_t (t)<\inline_LaTeX_Formula > 可以表示为:
<display_LaTeX_Formula>s_t (t)=A_t\cos (2\pi\int_{0}^{t} f_t (\tau) d\tau)=A_t\cos (2\pi (f_0t+\frac {B}{2T} t^2))<\display_LaTeX_Formula>

当信号遇到目标(如运动人体)后会产生反射,反射信号经过传播延迟 <inline_LaTeX_Formula>\tau<\inline_LaTeX_Formula > 后被雷达接收。假设目标与雷达之间的距离为 < inline_LaTeX_Formula>R<\inline_LaTeX_Formula>,则传播延迟 < inline_LaTeX_Formula>\tau = \frac {2R}{c}<\inline_LaTeX_Formula>,其中 < inline_LaTeX_Formula>c<\inline_LaTeX_Formula > 是光速。接收信号 < inline_LaTeX_Formula>s_r (t)<\inline_LaTeX_Formula > 可以表示为:
<display_LaTeX_Formula>s_r (t)=A_r\cos (2\pi (f_0 (t - \tau)+\frac {B}{2T}(t - \tau)^2))<\display_LaTeX_Formula>

二、运动人体对回波信号的影响

1. 距离信息

运动人体与雷达之间的距离会导致接收信号相对于发射信号存在时间延迟。通过测量发射信号和接收信号之间的频率差(差频信号),可以计算出目标与雷达之间的距离。将发射信号和接收信号进行混频,得到差频信号 <inline_LaTeX_Formula>s_{IF}(t)<\inline_LaTeX_Formula>:
<display_LaTeX_Formula>s_{IF}(t)=s_t (t)\times s_r (t)=A_{IF}\cos (2\pi f_{IF} t+\varphi)<\display_LaTeX_Formula>
其中,差频 < inline_LaTeX_Formula>f_{IF}=\frac {B}{T}\tau=\frac {2BR}{cT}<\inline_LaTeX_Formula>。通过测量 < inline_LaTeX_Formula>f_{IF}<\inline_LaTeX_Formula>,可以计算出目标距离 < inline_LaTeX_Formula>R=\frac {cTf_{IF}}{2B}<\inline_LaTeX_Formula>。

2. 速度信息

由于人体的运动,会产生多普勒效应。多普勒频移 <inline_LaTeX_Formula>f_d<\inline_LaTeX_Formula > 与目标的径向速度 < inline_LaTeX_Formula>v<\inline_LaTeX_Formula > 有关,其关系为:
<display_LaTeX_Formula>f_d=\frac {2v}{\lambda}<\display_LaTeX_Formula>
其中,<inline_LaTeX_Formula>\lambda<\inline_LaTeX_Formula > 是雷达信号的波长。在 FMCW 雷达中,多普勒频移会叠加在差频信号上,使得实际的差频信号频率为 < inline_LaTeX_Formula>f_{total}=f_{IF}\pm f_d<\inline_LaTeX_Formula>,正负号取决于目标是靠近还是远离雷达。

三、回波信号的特点

1. 时变特性

由于人体的运动,目标与雷达之间的距离和速度不断变化,因此回波信号的差频和多普勒频移也会随时间变化。这使得回波信号具有时变特性,在处理时需要考虑信号的动态变化。

2. 多径效应

在实际环境中,运动人体的回波信号可能会受到周围物体的反射,产生多径效应。多径信号会与直达回波信号相互叠加,导致信号的幅度和相位发生变化,增加了信号处理的复杂性。

3. 微弱性

人体的雷达散射截面积相对较小,因此回波信号的强度通常较弱。在接收和处理回波信号时,需要采用高增益的天线和低噪声的放大器,以提高信号的信噪比。

⛳️ 运行结果

🔗 参考文献

[1] 温宗周,刘垚,段俊瑞,李健全.基于DSP的LFMCW雷达信号处理技术研究[J].电子测量技术, 2016(5):4.DOI:10.3969/j.issn.1002-7300.2016.05.028.

[2] 吴永存.汽车主动防撞毫米波雷达信号处理技术研究[D].西南科技大学,2016.

[3] 高志强.船用调频连续波雷达信号处理关键算法研究与实现[D].电子科技大学,2016.DOI:10.7666/d.D00989012.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值