✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 有源滤波器基本原理
有源滤波器(APF)是一种用于动态抑制谐波、补偿无功的电力电子装置。它通过实时检测负载电流中的谐波成分,然后产生与之大小相等、方向相反的补偿电流,注入到电网中,从而实现对谐波的抑制,使电网电流正弦化。
2. PI 控制
- 原理
:PI(比例 - 积分)控制器是一种常用的反馈控制器。比例环节用于快速响应误差信号,根据误差的大小产生相应的控制作用;积分环节则用于消除稳态误差,通过对误差的积分来不断调整控制量,直到误差为零。
- 在有源滤波器中的应用
:在有源滤波器中,PI 控制器通常用于对直流侧电压进行控制,以维持直流侧电压的稳定。同时,也可以用于对补偿电流的幅值进行控制,使其能够快速跟踪负载电流中的谐波幅值变化。例如,通过检测直流侧电压与给定值之间的误差,利用 PI 控制器输出一个控制信号,调节有源滤波器的逆变器输出,从而稳定直流侧电压。
3. 重复控制
- 原理
:重复控制是一种基于内模原理的控制方法,它针对周期性信号具有良好的跟踪和抑制能力。其基本思想是在控制系统中引入一个与参考信号同周期的内模,通过不断地学习和记忆过去的误差信息,来预测和补偿未来的误差,从而实现对周期性信号的无差跟踪。
- 在有源滤波器中的应用
:对于有源滤波器来说,由于负载电流中的谐波成分通常具有周期性,因此重复控制非常适合用于谐波抑制。它可以根据上一周期的误差来调整当前周期的补偿电流,使得补偿电流能够更加准确地跟踪谐波电流的变化,提高谐波抑制的精度。
4. PI + 重复控制策略模型
- 结构
:将 PI 控制和重复控制相结合,形成一个复合控制器。通常,PI 控制器作为外环,用于快速调节系统的整体性能,如稳定直流侧电压、控制补偿电流的幅值等;重复控制器作为内环,主要针对谐波电流的周期性特点,对谐波进行精确跟踪和补偿。
- 控制流程
:首先,检测负载电流和电网电压,通过谐波检测算法得到负载电流中的谐波成分。然后,将谐波信号作为参考输入,与实际的补偿电流反馈信号进行比较,得到误差信号。该误差信号同时送入 PI 控制器和重复控制器进行处理。PI 控制器根据误差信号快速调整补偿电流的幅值和相位,以实现对谐波的初步抑制;重复控制器则根据过去的误差信息,对当前的误差进行修正,进一步提高谐波抑制的精度。最后,将 PI 控制器和重复控制器的输出相加,得到最终的控制信号,驱动有源滤波器的逆变器产生相应的补偿电流,注入到电网中,实现谐波抑制。
5. 模型优点
- 提高谐波抑制精度
:PI 控制的快速性和重复控制对周期性信号的精确跟踪能力相结合,能够有效提高有源滤波器对谐波的抑制精度,特别是对于低次谐波和周期性较强的谐波,能够实现更准确的补偿。
- 增强系统稳定性
:PI 控制器有助于稳定系统的直流侧电压和整体运行状态,而重复控制器在不影响系统稳定性的前提下,进一步提高了系统对谐波的抑制能力,使系统在不同负载条件下都能保持较好的稳定性和动态性能。
6. 模型改进与发展方向
- 自适应调整
:结合自适应控制算法,使 PI + 重复控制策略能够根据负载变化和电网运行条件的改变,自动调整控制器的参数,以实现更好的谐波抑制效果。
- 与其他控制策略结合
:研究将 PI + 重复控制与其他先进的控制策略,如模糊控制、神经网络控制等相结合,进一步提高有源滤波器的性能和智能化水平。
- 多目标优化
:不仅关注谐波抑制效果,还考虑有源滤波器的功率损耗、开关频率等因素,通过优化控制策略实现多目标优化,提高有源滤波器的综合性能
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇