✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在大数据与人工智能深度融合的时代,多变量时间序列数据广泛存在于各个领域,从金融市场中股价、交易量、利率等指标的波动,到工业生产里设备温度、压力、转速等参数的变化,精准预测其趋势对风险防范、资源优化配置和科学决策意义重大。然而,多变量间复杂的非线性关系和时间序列的长程依赖特性,使得预测任务充满挑战。TCN-GRU 模型融合时间卷积网络(TCN)和门控循环单元(GRU)的优势,为多变量时间序列预测提供了新的解决方案。
一、多变量时间序列预测:现状与挑战
多变量时间序列预测旨在综合分析多个相互关联的时间序列数据,从而预测未来趋势。以智能电网为例,电力负荷不仅与时间相关,还受天气状况、居民用电习惯、工业生产规模等多种因素影响,通过多变量时间序列预测,可帮助电力公司合理安排发电计划、优化电网调度,降低运营成本。
但该任务面临诸多难题。一方面,变量之间存在复杂的非线性交互关系,传统的线性模型难以捕捉这些关系;另一方面,时间序列数据具有长程依赖特性,即较远距离的时间点之间也可能存在关联,这对模型的记忆和学习能力提出了更高要求。此外,数据中的噪声以及不同变量间的尺度差异,也增加了预测的难度,亟需更有效的模型来应对。
二、TCN 与 GRU 原理详解
2.1 时间卷积神经网络(TCN)原理
TCN 是专为处理时间序列数据设计的深度学习模型,基于卷积神经网络(CNN)架构并针对时间序列特性改进。其核心特性之一是因果卷积(Causal Convolution),确保模型在预测时,仅能使用过去和当前时刻的信息,符合时间序列的因果逻辑。例如,在预测明天的交通流量时,模型只能依赖今天及之前的流量数据,避免了未来信息泄露导致的不合理预测。
膨胀卷积(Dilated Convolution)也是 TCN 的关键。通过设置不同的膨胀因子,TCN 能在不增加过多参数的情况下,扩大网络的感受野,从而捕捉到更长距离的时间依赖关系。随着网络层数增加,膨胀因子呈指数增长,使模型可有效处理长序列数据。同时,残差连接(Residual Connection)的运用缓解了深度网络训练过程中的梯度消失问题,提高了网络的训练效率和性能。
2.2 门控循环单元(GRU)原理
GRU 是循环神经网络(RNN)的一种变体,旨在解决 RNN 中梯度消失和梯度爆炸问题,更好地处理长序列数据中的长期依赖关系。GRU 通过引入重置门(reset gate)和更新门(update gate)来实现这一目标。
重置门决定了如何将新的输入信息与前一时刻的记忆相结合,控制前一时刻隐藏状态对当前计算的影响程度。更新门则用于控制前一时刻的隐藏状态有多少信息被传递到当前时刻,以及当前输入有多少信息被添加到隐藏状态中。通过这两个门的协同工作,GRU 能够选择性地记忆和遗忘信息,相比传统 RNN,能更有效地捕捉时间序列中的长期依赖特征,且结构相对简单,训练效率更高。
三、TCN-GRU 模型构建与实现
3.1 模型架构设计
在多变量时间序列预测任务中,首先将多个变量组成的时间序列数据输入到 TCN 中。TCN 利用因果卷积、膨胀卷积和残差连接,对多变量时间序列数据中的局部特征以及长距离依赖关系进行提取,得到包含丰富信息的特征向量。
接着,将 TCN 提取的特征向量输入到 GRU 中。GRU 进一步对这些特征进行处理,凭借其重置门和更新门机制,挖掘特征在时间维度上的变化规律和长期依赖关系,输出反映序列时序特征的向量。
最后,在 GRU 的输出层后连接全连接层,将 GRU 输出的特征向量映射到预测的目标维度,得到多变量时间序列的预测结果。这种架构使得 TCN-GRU 模型既能发挥 TCN 强大的特征提取能力,又能借助 GRU 出色的时序建模能力,实现精准的多变量时间序列预测。
3.2 数据处理与模型训练
对于原始的多变量时间序列数据,首先进行数据清洗,处理缺失值和异常值。对于缺失值,可采用均值填充、插值法等方法进行处理;对于异常值,通过统计分析和可视化手段进行识别,并根据实际情况进行修正或删除。
接着,对数据进行归一化处理,将不同变量的数据映射到相同的数值区间,如 [0, 1] 或 [-1, 1],以消除变量间量纲差异对模型训练的影响。然后,按照一定比例将数据划分为训练集、验证集和测试集。
在模型训练过程中,使用训练集对 TCN-GRU 模型进行训练,通过反向传播算法计算预测值与真实值之间的误差,并更新模型的参数。在训练过程中,利用验证集监控模型的性能,防止过拟合。当模型在验证集上的性能不再提升时,停止训练。最后,使用测试集评估模型的泛化能力和预测性能。
⛳️ 运行结果
📣 部分代码
%% 导入数据
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇