聚划算!Transformer-GRU、Transformer、GRU三模型多变量回归预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数据驱动决策的时代,多变量回归预测广泛应用于金融、工业、交通等多个领域。从股票市场的股价走势预测,到工业生产中的产品质量预估,准确的多变量回归预测能为企业和机构提供有力的决策支持。然而,多变量间复杂的非线性关系和数据的动态变化,使得预测任务充满挑战。Transformer-GRU、Transformer、GRU 这三种模型各有特点,在多变量回归预测中展现出不同的性能。接下来,我们就来深入探究它们的表现,看看哪个更 “聚划算”。

一、多变量回归预测:背景与挑战

多变量回归预测旨在通过分析多个自变量与单个因变量之间的关系,实现对因变量的精准预测。在实际场景中,变量之间的关系错综复杂。例如在交通流量预测中,交通流量不仅与时间、天气有关,还受到周边商业活动、节假日等因素的影响,这些变量相互交织,呈现出高度非线性的特征。

同时,数据在时间维度上具有动态变化性,不同时间段内变量之间的关系可能发生改变,这要求模型具备强大的动态适应性和学习能力。此外,传统的预测模型在处理高维数据和复杂关系时,往往存在局限性,而模型超参数的优化也直接影响着预测的准确性,这些都给多变量回归预测带来了巨大挑战。

二、Transformer-GRU、Transformer、GRU 模型原理

2.1 GRU 模型原理

GRU(门控循环单元)是循环神经网络(RNN)的一种优化变体,主要用于解决 RNN 中梯度消失和梯度爆炸问题,从而更好地处理长序列数据中的长期依赖关系。GRU 通过引入重置门(reset gate)和更新门(update gate)来实现这一目标。

重置门决定新输入信息与前一时刻记忆的结合方式,控制前一时刻隐藏状态对当前计算的参与程度;更新门则负责调节前一时刻隐藏状态传递到当前时刻的信息量,以及当前输入信息添加到隐藏状态的比例。通过这两个门的协同运作,GRU 能够灵活地记忆和遗忘信息,相比传统 RNN,更高效地捕捉时间序列中的长期依赖特征,且结构相对简单,训练速度更快。

2.2 Transformer 模型原理

Transformer 是基于自注意力机制(Self-Attention)构建的深度学习模型,它彻底革新了传统序列处理方式。自注意力机制允许模型在处理序列数据时,计算每个位置与其他所有位置之间的关联程度,动态分配注意力权重,聚焦关键信息。

在 Transformer 架构中,输入序列首先经嵌入层转化为向量表示,随后进入多头注意力机制模块。多头注意力机制将输入映射到多个子空间进行并行注意力计算,从不同角度捕捉序列特征,之后再通过前馈神经网络进一步处理。这种架构不仅实现了并行计算,显著提升了训练效率,还能有效处理长距离依赖关系,非常适合挖掘多变量数据中复杂的特征关系。

2.3 Transformer-GRU 模型原理

Transformer-GRU 模型结合了 Transformer 和 GRU 的优势。首先,利用 Transformer 对多变量数据进行特征提取,通过自注意力机制和多头注意力机制挖掘变量间复杂的非线性关系和长距离依赖特征;然后,将 Transformer 提取的特征向量输入到 GRU 中,GRU 进一步处理这些特征,利用其门控机制挖掘特征在时间维度上的变化规律和长期依赖关系,从而实现更精准的多变量回归预测。

三、实验设置

3.1 实验数据集

为了全面评估三个模型的性能,我们选取了多个具有代表性的多变量数据集。在金融领域,选用包含股票价格、成交量、市盈率、利率等变量的股票价格预测数据集;在工业生产领域,采用涵盖原材料成分、生产温度、生产速度、机器转速等变量的产品质量预测数据集;在交通领域,使用包含车流量、车速、拥堵指数、天气状况等变量的交通流量预测数据集。这些数据集具有不同的数据特点和复杂程度,能够充分检验模型在实际应用中的表现。

3.2 数据预处理

拿到原始数据集后,首先进行数据清洗,处理缺失值和异常值。对于缺失值,采用均值填充、中值填充或插值法等进行处理;对于异常值,通过统计分析和可视化手段识别后,根据实际情况进行修正或删除。

接着,对数据进行归一化处理,将不同变量的数据映射到相同的数值区间,如 [0, 1] 或 [-1, 1],消除变量间量纲差异对模型训练的影响。最后,按照 7:1:2 的比例将数据划分为训练集、验证集和测试集,训练集用于模型参数学习,验证集用于调整超参数,测试集用于评估模型的泛化能力。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值