激光雷达和相机的外参标定

本文介绍了一个开源的激光雷达与相机外参标定工具,主要探讨基于特征的标定方法,包括如何构建PnP问题、求解方法及实际效果。通过AprilTag检测算法自动或手动提取特征点,利用P3P等方法进行外参求解,旨在提高标定精度和自动化程度。
摘要由CSDN通过智能技术生成

激光雷达和相机的外参标定

我两年前做的本科毕设课题是激光雷达与相机的外参标定,最近抽空整理了一下当时完成的标定工具,这篇博客的目的也是来介绍一下这个标定工具(目前已经开源)。

介绍

在当时的研究现状(两年前,现在应该也大差不差)中,主要有基于特征对应关系的方法、基于运动观测的方法、基于最大化互信息的方法和还有少数基于神经网络的方法。在实际进行标定时,我们一般在乎的是标定方法的两个指标——精度和自动化程度,精度也就是标定的外参有多么精确,一般可以通过投影来定性的来看出来,自动化程度指的是这种方法在标定时需要进行什么操作(比如特定的数据录制要求),以及需要满足什么前提条件(比如特定的标定板)等等。目前四种标定方法的特点如下表所示(个人调研结果)。
在这里插入图片描述

ps: 现在也有一些基于特征的方法尽可能地提高了自动化程度(比如有一些自动提取特征的操作)

精度和自动化程度这两个指标肯定是精度更重要咯,毕竟是精度直接决定了之后传感器融合的一个效果。所以我本科毕设就是一种基于特征的标定方法,同时尽可能地在工程角度上提高自动化程度。

原理

基于特征的方法原理也比较简单,实际上就是构建并求解一个PnP问题

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值