激光雷达和相机的外参标定

本文介绍了一个开源的激光雷达与相机外参标定工具,主要探讨基于特征的标定方法,包括如何构建PnP问题、求解方法及实际效果。通过AprilTag检测算法自动或手动提取特征点,利用P3P等方法进行外参求解,旨在提高标定精度和自动化程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

激光雷达和相机的外参标定

我两年前做的本科毕设课题是激光雷达与相机的外参标定,最近抽空整理了一下当时完成的标定工具,这篇博客的目的也是来介绍一下这个标定工具(目前已经开源)。

介绍

在当时的研究现状(两年前,现在应该也大差不差)中,主要有基于特征对应关系的方法、基于运动观测的方法、基于最大化互信息的方法和还有少数基于神经网络的方法。在实际进行标定时,我们一般在乎的是标定方法的两个指标——精度和自动化程度,精度也就是标定的外参有多么精确,一般可以通过投影来定性的来看出来,自动化程度指的是这种方法在标定时需要进行什么操作(比如特定的数据录制要求),以及需要满足什么前提条件(比如特定的标定板)等等。目前四种标定方法的特点如下表所示(个人调研结果)。
在这里插入图片描述

ps: 现在也有一些基于特征的方法尽可能地提高了自动化程度(比如有一些自动提取特征的操作)

精度和自动化程度这两个指标肯定是精度更重要咯,毕竟是精度直接决定了之后传感器融合的一个效果。所以我本科毕设就是一种基于特征的标定方法,同时尽可能地在工程角度上提高自动化程度。

原理

基于特征的方法原理也比较简单,实际上就是构建并求解一个PnP问题

### 激光雷达相机标定代码实现 #### ROS环境下的激光雷达相机标定方法 在ROS环境下,`find_transform` 节点作为核心部分用于计算并发布激光雷达相机之间的变换矩阵。此过程涉及订阅来自两个传感器的数据流,并通过匹配特征来估计相对位姿。 对于基于ROS框架的具体实践方案,在Python脚本中可以利用`tf2_ros.TransformBroadcaster`广播静态转换关系: ```python import rospy from tf2_ros import StaticTransformBroadcaster, TransformStamped import geometry_msgs.msg as gm def broadcast_static_tf(): br = StaticTransformBroadcaster() t = TransformStamped() t.header.stamp = rospy.Time.now() t.header.frame_id = "lidar_frame" t.child_frame_id = "camera_frame" # 假设已知的平移向量 (tx, ty, tz) 旋转四元数 (qx, qy, qz, qw) trans = (-0.1, 0.0, 1.5) rot = (0., 0., -0.7071068, 0.7071068) t.transform.translation.x = trans[0] t.transform.translation.y = trans[1] t.transform.translation.z = trans[2] t.transform.rotation.x = rot[0] t.transform.rotation.y = rot[1] t.transform.rotation.z = rot[2] t.transform.rotation.w = rot[3] br.sendTransform(t) if __name__ == '__main__': rospy.init_node('static_tf_broadcaster') rate = rospy.Rate(10) # 10hz while not rospy.is_shutdown(): broadcast_static_tf() rate.sleep() ``` 上述代码片段展示了如何定义一个简单的ROS节点来发送固定的坐标系间转换信息[^1]。然而实际应用中的获取通常依赖于专门设计好的算法流程或工具包来进行自动化处理。 #### 使用MATLAB进行自动化的标定 除了编写自定义程序之,还可以借助像MathWorks提供的 Lidar Camera Calibrator 应用来简化工作流程。该应用程序允许用户导入同步采集到的一组LiDAR点云图像以及对应的摄像头帧序列文件,之后便能交互式地完成整个校准任务而无需深入理解背后的数学模型细节[^2]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值