全文阅读链接 通用化高精地图数据模型
一、高精度地图的分类:
1、以slam为基础的高精度地图创建,其关键内容主要是解决无人驾驶定位问题,对全局规划planning,局部规划routing部分基本不涉及,其表现形式多为栅格地图、点云地图等。
2、以slam前端的建图部分为基础,添加视觉图像的深度学习、语义分割等技术,将地图创建成为一种具有拓扑结构的地图,在精度上做到车道线级别,且可以较为全面的应用在整个无人驾驶模块。例如,hdm中包含经纬高等信息,可以为无人驾驶定位提供较为精确的定位信息,hdm中包含车道线及变道信息,可以为局部规划提供先验信息;hdm的车道信息基本固定,在突然出现障碍物时,可通过结合视觉信息,让无人驾驶车辆在本车道实现全局规划过程。
二、高精度地图的制作:
地图制作主要分为三个部分,采集,加工,转换。1、采集创建地图所需要的传感器数据,一般是激光雷达(lidar),相机(camera)以及惯性导航单元(imu可添加rtk);2、加工一般是将三维点云投影到二维平面,形成栅格地图,然后取点云的反射率生成底图。这个地图相当于ps工具中最下面的一个图层。然后就是通过相机图像的深度学习结合语义分割将地图的地面部分与地上部分分开,将地面部分的标志区分,将地上部分的标志物区分,通过算法实现大部分地图的绘制(其中地面部分包括车道线,车道中心线,换道时车道中心线,路沿,左转右转标志,车道线类型等,属性相关内容会以较为通用的格式进行添加;地面上部分包括信号灯,信号标识,拒马,电线杆等)。3、转换,这部分使用到的原因是目前的高精度地图没有一个较为统一的格式,这个格式是指地图文件格式。
三、高精度地图可以预见的问题;
1、采集效率较低,采集成本较高
2、更新维护方法待探究
3、更新维护算法待开源