[TOOL]剩余系下求低阶矩阵的逆

在希尔密码中要解密就要求密钥矩阵在剩余系下的逆矩阵.这篇文章主要是简述求逆的方法,备查备忘.
[ 1 2 3 4 5 6 7 8 9 ] \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] 147258369
像这样的矩阵.

理论准备

对于低阶矩阵,最适合的方法是使用伴随矩阵.即:
A ∗ = [ A j i ] A^*=\left[ \begin{matrix} A_{ji} \end{matrix} \right] A=[Aji]
其中需要注意的几点:

  1. A ∗ A^* A是转置的.最好按行算,按列写;
  2. A i j A_{ij} Aij= ( − 1 ) i + j × S o m e t h i n g (-1)^{i+j}\times Something (1)i+j×Something.注意-1.

然后 A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{|A|} A1=AA.

Steps

  1. 计算 ∣ A ∣ |A| A.确定是否可逆.
  2. 逐行计算 A i j A_{ij} Aij,注意-1.
  3. 计算 A − 1 A^{-1} A1.

在剩余系内几点方法

  1. 在计算 A i j A_{ij} Aij的时候记得对模取余.
  2. 最后相除的时候:
    由于 ∀ a ∈ Z m , a   e q u a l s   t o   a + k m , k ∈ Z \forall a\in \mathbb{Z}_m,a\ equals\ to\ a+km,k\in \mathbb{Z} aZm,a equals to a+km,kZ,就是要找出 ∃ k , ∣ A ∣   ∣ a + k m = a ∣ A ∣ . \exists k,|A|\ |a+km=\frac{a}{|A|}. k,A a+km=Aa.
    比如, Z 26 下 的 9 ÷ 7 , ∃ k = 1 , 9 + 1 × 26 = 35 , 7 ∣ 35 , ∴ 9 ÷ 7 = 35 ÷ 7 = 5. Z_{26}下的9\div 7,\exists k=1,9+1\times 26=35,7|35, \therefore 9\div 7=35\div 7=5. Z269÷7,k=1,9+1×26=35,735,9÷7=35÷7=5.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值