蒙特卡洛方法计算圆周率

Python使用Numpy求圆周率π的值,使用蒙特卡洛方法,在一个正方形中,用正方形的边长画出1/4圆的扇形,假设圆的半径为r,则正方形的面积为r平方,圆的面积为1/4πr平方,它们的面积之比是π/4

在正方形内随机产生足够多的点,计算落在扇形区域内的点的个数与总的点个数的比值。当产生的随机点足够多时,这个比值和面积比应该是一致的。这样我们就可以算出π的值。判断一个点是否落在扇形区域的方法是计算这个点到圆心的距离,当距离小于半径时,说明这个点落在了扇形内。

import numpy as np

#假设圆的半径为1,圆心在原点
n_dots = 1000000
x = np.random.random(n_dots)
y = np.random.random(n_dots)
distance = np.sqrt(x ** 2 + y ** 2) #随机产生一百万个点
in_circle = distance[distance < 1] #计算每个点到圆心的距离

pi = 4 * float(len(in_circle)) / n_dots #计算出 PI 的值
print pi

计算结果
计算出来的结果大概是3.14174符合预期

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客范儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值