在生物科技领域,蛋白质工程一直是一个极具挑战性的研究方向。如何设计和优化蛋白质序列以获得理想的功能特性,是困扰科学家们多年的难题。近日,微软研究院AI for Science团队在这一领域取得重大突破,他们开发的μProtein框架展现出了强大的蛋白质序列优化能力。
研究背景与意义
蛋白质工程的核心挑战在于序列空间过于庞大。即使是一个较小的蛋白质,其可能的突变组合也是天文数字。传统的实验方法受限于时间和成本,通常只能探索单点突变,而无法全面考察多点突变的效果。因此,开发能够准确预测突变效应并指导序列设计的计算方法就显得尤为重要。
μProtein框架的创新设计
μProtein框架包含两个核心组件:μFormer和μSearch。
μFormer:精准的突变效应预测模型
μFormer采用了一个创新的两阶段设计:
- 预训练阶段:
-
使用超过3000万个蛋白质序列进行自监督学习
-
创新性地引入配对掩码语言模型(PMLM),能更好地捕捉氨基酸残基间的相互作用
-
PMLM的损失函数为:
- 评分模块:
-
残基级评分:评估每个位点突变的合理性
-
基序级评分:捕捉局部序列模式
-
序列级评分:考虑整体序列特征
这三个评分模块的输出最终组合得到突变序列的适应度预测分数:
μSearch:高效的序列空间探索策略
μSearch将蛋白质工程问题建模为马尔可夫决策过程(MDP):
-
状态:当前突变序列
-
动作:选择突变位点和突变类型
-
奖励:μFormer预测的适应度分数
采用近端策略优化(PPO)算法进行训练:
其中:
-
θπθπθ
-
φ
为了避免陷入局部最优,引入了Dirichlet噪声进行探索。
论文图1展示了μProtein的整体框架,包括μFormer的预训练和评分模块设计,以及μSearch的强化学习策略。
实验验证与突破性成果
突变效应预测的卓越表现
在ProteinGym基准测试中,μFormer在78个数据集中的48个上实现了最优性能,平均Spearman相关系数达到0.703。特别是在处理插入/删除突变时,μFormer展现出了独特优势。
论文图2展示了μFormer与现有方法的性能对比。
多点突变预测的强大能力
一个突出的优势是μFormer能够仅通过单点突变数据训练,就准确预测多点突变的效果。在9个不同蛋白质的测试中,μFormer的Spearman相关系数达到0.653-0.946。
论文图3展示了μFormer在处理多点突变时的出色表现。
β-内酰胺酶优化的实验验证
研究团队将μProtein应用于β-内酰胺酶TEM-1的优化。实验结果令人振奋:
-
在200个测试的突变体中,47个(23.5%)表现优于野生型
-
发现了一个双突变体G236S;T261V,其活性超过了已知的最佳四突变体
-
部分突变体使大肠杆菌的生长速率提高了2000倍
论文图4和图5详细展示了实验结果和突变分布分析。
技术创新要点总结
- 创新的预训练策略:
-
配对掩码语言模型更好地捕捉氨基酸残基间的相互作用
-
三层评分模块设计,全面考虑突变效应
- 高效的序列空间探索:
-
基于PPO的强化学习框架
-
Dirichlet噪声辅助探索
-
多轮搜索策略
- 优异的泛化能力:
-
从单点突变数据泛化到多点突变预测
-
适应不同类型的蛋白质和功能优化任务
未来展望
μProtein为蛋白质工程开辟了新的研究范式。未来可以通过以下方向进一步增强其能力:
-
整合三维结构信息
-
扩展到更长序列的处理
-
支持多目标优化
-
增强对表型和环境因素的建模
代码与数据可用性
-
FLIP基准测试数据:https://github.com/J-SNACKKB/FLIP/
-
ProteinGym数据集:https://github.com/OATML-Markslab/ProteinGym
-
μProtein代码实现:https://github.com/MutonAI/Mu-Former
这项研究展示了人工智能在生物技术领域的巨大潜力。μProtein不仅推动了蛋白质工程的技术进步,也为其他生物分子优化任务提供了借鉴。相信随着技术的不断完善,我们将看到更多AI驱动的生物技术突破。
Q&A环节:深入解析μProtein的技术创新
Q1: μFormer的配对掩码语言模型(PMLM)相比传统掩码语言模型有什么创新和优势?为什么能更好地捕捉蛋白质序列中的相互作用?
传统的掩码语言模型(MLM)在预训练时是独立地预测每个被掩码的位置,其损失函数可以表示为:
而μFormer创新性地引入了配对掩码语言模型,它考虑被掩码位置之间的联合概率分布:
这种设计的优势在于:
-
更符合蛋白质的生物学特性:蛋白质中的氨基酸残基之间存在复杂的相互作用,某个位点的突变往往会影响到其他位点的适应性。PMLM通过建模位点对的联合分布,能够更好地捕捉这种依赖关系。
-
增强了模型对表型效应的理解:在预测突变效应时,不同位点的组合效应(epistasis)是一个关键因素。PMLM在预训练阶段就学习了位点间的相互影响,为后续的突变效应预测奠定了基础。
-
提高了预测的鲁棒性:通过同时考虑多个位点的关系,模型能够建立更全面的序列表示,减少了单独预测可能带来的误差累积。
Q2: μFormer的三个评分模块是如何协同工作的?它们各自捕捉了蛋白质序列的什么特征?
μFormer的三个评分模块分别工作在不同的粒度层面:
- 残基级评分模块():
这个模块关注单个氨基酸残基的合理性,通过计算每个位点的对数似然来评估突变的局部影响。它主要捕捉:
-
氨基酸在特定位置的保守性
-
物理化学性质的兼容性
-
局部序列模式的合理性
- 基序级评分模块():
这个模块使用卷积神经网络处理局部序列片段,能够识别:
-
功能基序
-
二级结构元件
-
局部构象特征
- 序列级评分模块():
β
这个模块基于整个序列的表示进行评分,关注:
-
全局序列特征
-
长程相互作用
-
整体结构稳定性
这三个模块的输出通过加权组合得到最终预测分数:
Q3: μSearch的强化学习框架是如何实现高效序列空间探索的?其关键技术创新点是什么?
μSearch采用了一个创新的强化学习框架来探索庞大的序列空间。其关键技术创新包括:
- 双重策略网络设计:
-
突变位点策略网络:π_site(s|x),决定在哪个位置进行突变
-
突变类型策略网络:π_type(a|s,x),决定突变成什么氨基酸 这种分解降低了动作空间的复杂度,使得学习更加高效。
- PPO算法的改进应用:
θ
为了处理蛋白质工程中的特殊挑战,μSearch对标准PPO算法做了以下改进:
-
引入Dirichlet噪声进行探索:P(s,a) = (1-ϵ)·π_θ(a|s) + ϵ·η,η ~ Dir(0.03)
-
使用混合分布计算重要性权重,提高训练稳定性
-
采用多轮搜索策略,允许逐步优化序列
Q4: μProtein如何实现从单点突变数据到多点突变效应的准确预测?其背后的技术原理是什么?
μProtein能够实现这种出色的泛化性能,主要得益于以下技术创新:
- 表示学习的创新:
-
PMLM预训练捕捉了位点间的相互作用模式
-
三级评分模块在不同尺度上建模序列特征
-
嵌入空间的组织反映了功能相关性而非突变数量
- 架构设计的优势:
-
模型能够自然地学习突变位点间的非线性相互作用
-
评分模块的层次化设计有助于捕捉复杂的表型效应
- 训练策略的改进:
-
使用辅助任务增强对表型效应的理解
-
采用正则化技术防止过拟合
-
多尺度特征融合提高预测稳定性
Q5: μProtein框架中的损失函数设计有什么特别之处?这些设计如何提升了模型性能?
μProtein框架中的损失函数设计体现了多个层面的创新:
- 预训练阶段的配对掩码损失:
-
捕捉氨基酸残基间的协同作用
-
建立更丰富的序列表示
-
提高对多点突变效应的理解
- 突变效应预测的多任务损失:
θαβ
其中包含三个评分模块的贡献:
-
残基级损失:确保局部预测的准确性
-
基序级损失:优化功能模块的识别
-
序列级损失:保证全局效应的准确评估
- 强化学习部分的策略优化损失:
φφ
-
平衡探索与利用
-
确保策略更新的稳定性
-
提高奖励估计的准确性
这些损失函数的精心设计使得μProtein能够:
-
在不同层面准确建模突变效应
-
实现从单点到多点突变的有效泛化
-
在序列空间中进行高效探索
-
保持训练过程的稳定性
通过这些创新的损失函数设计,μProtein成功地将深度学习、强化学习和蛋白质工程的领域知识进行了有机融合,创造了一个强大而实用的蛋白质优化框架。
Q6: μProtein如何处理不同长度序列的蛋白质?它的位置编码和序列表示机制有什么特点?
μProtein在处理不同长度序列方面采用了一系列创新设计:
- 位置编码机制:
- 采用非参数化的位置编码:
这种设计使得模型能够处理不同长度的序列,并保持位置信息的相对关系。
- 序列表示策略:
- 引入特殊的[CLS]标记作为序列级表示:
- 长度归一化处理:
- 评分函数中的长度归一化项:
这确保了不同长度序列的评分具有可比性。
Q7: μFormer的预训练过程中使用了哪些策略来提高模型的泛化能力?预训练任务的设计有什么特别之处?
μFormer的预训练阶段包含多个创新设计:
- 多尺度掩码策略:
其中l表示连续掩码的长度,这种策略帮助模型学习不同尺度的序列模式。
- 动态掩码比例:
-
训练初期:较高的掩码比例(约20%)
-
训练后期:降低掩码比例(约12%) 这种动态调整帮助模型逐步建立对序列的理解。
- 对比学习任务:
其中:
-
是原始序列的表示
-
是同一序列的不同增强视图
-
τ是温度参数
- 序列重构任务:
这个任务要求模型从局部上下文重建被掩码的氨基酸。
Q8: μSearch在搜索策略上是如何平衡探索和利用的?其奖励函数设计有什么特点?
μSearch采用了一个复杂的探索-利用平衡机制:
- Dirichlet噪声的动态调整:
ϵϵγ
其中:
-
ϵ是时间相关的噪声比例
-
T是总训练步数
-
γ是衰减因子
- 多级奖励函数设计:
包括:
-
适应度奖励:基于μFormer的预测分数
-
多样性奖励:鼓励探索新的序列空间
-
约束奖励:确保突变满足物理化学约束
- 自适应温度参数:
这种设计使得探索程度随着训练进展动态调整。
Q9: μProtein如何处理序列中的表型效应和突变间的依赖关系?其建模方法有什么创新?
μProtein通过多层次的建模方法来捕捉复杂的表型效应:
- 非线性相互作用建模:
其中:
-
, 是位点的隐层表示
-
⊙表示逐元素乘积
-
[;]表示向量拼接
- 多尺度特征整合:
这种设计考虑了:
-
局部效应:单个位点的直接影响
-
全局效应:序列级别的变化
-
交互效应:位点间的相互作用
- 层次化的表型建模:
其中z代表潜在的表型空间,通过变分推断进行学习。
Q10: μProtein框架中的模型集成策略是如何设计的?不同模型之间如何协同工作?
μProtein采用了精心设计的模型集成策略:
- 集成预测框架:
其中:
-
是第k个模型的预测
-
是动态学习的权重
- 多样性保持机制:
这个损失函数鼓励不同模型学习互补的特征。
- 自适应集成权重:
其中:
-
α是基于验证集性能动态更新的分数
-
T是控制权重分布平滑度的温度参数
- 错误分析和纠正:
这个模块学习识别和纠正单个模型的预测偏差。
通过这种复杂的集成机制,μProtein能够:
-
提高预测的稳定性和可靠性
-
捕捉不同层面的序列特征
-
降低单个模型的预测误差
-
实现更鲁棒的序列优化
这些技术创新使得μProtein成为一个强大的蛋白质工程工具,能够有效地指导实验设计和序列优化。实验结果表明,这种集成策略显著提高了模型的预测准确性和泛化能力。
μProtein: 蛋白质工程深度学习框架详细使用指南
一、框架简介
μFormer(也可称为Mu-Former、uFormer或Muformer)是一个专门用于预测蛋白质突变效应的深度学习工具。该框架源自论文《Accelerating protein engineering with fitness landscape modeling and reinforcement learning》,主要用于:
-
蛋白质突变效应预测
-
蛋白质序列优化
-
多点突变分析
-
蛋白质工程设计
二、环境配置
2.1 基础环境要求
-
Python 3.8
-
CUDA 12.2(已测试验证)
-
足够的GPU显存(建议至少16GB)
2.2 详细安装步骤
- 创建并激活conda环境
conda create -n mutation python==3.8 conda activate mutation
- 安装依赖包
pip install -r requirements.txt
- 安装PyTorch 根据GPU型号选择合适版本:
- 对于支持CUDA 11.3的GPU:
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
- 仅CPU版本:
pip install torch==1.12.0+cpu torchvision==0.13.0+cpu torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu
三、数据准备
3.1 下载预训练模型和示例数据
- 访问figshare下载:
-
预训练编码器模型(uformer_l_encoder.pt)
-
示例数据集
- 数据格式要求:
-
FASTA文件:包含目标蛋白质序列
-
TSV文件格式(训练/验证/测试集):
mutation score A1G 0.5 D2E 0.8 ... ...
3.2 文件结构组织
project_root/ ├── data/ │ ├── protein.fasta │ ├── train.tsv │ ├── valid.tsv │ └── test.tsv ├── models/ │ └── uformer_l_encoder.pt └── output/
四、模型训练
4.1 单GPU训练
基本训练命令:
python main.py \ --decoder-name mono \ --encoder-lr 1e-5 \ --decoder-lr 1e-4 \ --epochs 300 \ --warmup-epochs 10 \ --batch-size 8 \ --pretrained-model ./models/uformer_l_encoder.pt \ --fasta ./data/protein.fasta \ --train ./data/train.tsv \ --valid ./data/valid.tsv \ --test ./data/test.tsv \ --output-dir ./output
参数说明:
-
decoder-name
: 解码器类型,通常使用"mono" -
encoder-lr
: 编码器学习率 -
decoder-lr
: 解码器学习率 -
epochs
: 训练轮数 -
warmup-epochs
: 预热训练轮数 -
batch-size
: 批次大小
4.2 多GPU训练
使用4个GPU的训练命令:
python -m torch.distributed.run \ --nnodes=1 \ --nproc_per_node=4 \ --node_rank=0 \ --master_port=6005 \ main.py \ --decoder-name mono \ --encoder-lr 1e-5 \ --decoder-lr 1e-4 \ --batch-size 2 \ --epochs 300 \ --warmup-epochs 10 \ --pretrained-model ./models/uformer_l_encoder.pt \ --fasta ./data/protein.fasta \ --train ./data/train.tsv \ --valid ./data/valid.tsv \ --test ./data/test.tsv \ --output-dir ./output
注意事项:
-
多GPU训练时,总batch size = 单卡batch size × GPU数量
-
master_port需要是未被占用的端口号
五、结果分析与模型使用
5.1 训练过程监控
在output目录下会生成:
-
训练日志文件
-
模型检查点
-
验证集评估结果
5.2 模型评估
python evaluate.py \ --model-path ./output/best_model.pt \ --test-file ./data/test.tsv \ --output-file ./output/predictions.tsv
5.3 使用训练好的模型进行预测
python predict.py \ --model-path ./output/best_model.pt \ --sequence PROTEIN_SEQUENCE \ --mutations "A1G,D2E" \ --output-file ./output/predictions.csv
六、常见问题解决
- 显存不足:
-
减小batch size
-
使用梯度累积
-
使用混合精度训练
- 训练不收敛:
-
调整学习率
-
增加预热轮数
-
检查数据质量
- CUDA版本不匹配:
-
确认CUDA版本:
nvidia-smi
-
安装对应版本PyTorch
七、最佳实践建议
- 数据预处理:
-
确保数据质量
-
合理划分训练/验证/测试集
-
数据标准化
- 训练策略:
-
从小数据集开始调试
-
使用学习率调度器
-
定期保存检查点
- 模型优化:
-
使用交叉验证
-
尝试不同的超参数
-
模型集成
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。