Lancet Digit Health | 基于机器学习的蛋白质组学多疾病预测与生物标志物发现

研究背景

基于血液的组学有可能提高预测疾病发病和病程的能力,但通常缺乏大规模的系统和严格的测试。先前多项研究成功开发并验证了多种疾病的遗传和多基因预测因子,但将其转化为临床应用仍然面临挑战,部分原因在于关于预测能力在临床易测量参数基础上是否能够进一步提升的知识存在空白。与遗传基因组相反,蛋白质组是信息传递的核心层,在早期疾病机制的反应中发生变化。广谱蛋白质组检测有可能改善疾病预测,实现有针对性的预防和管理,但迄今为止,研究仅限于极少数选定的疾病,尚未评估多种条件下的预测性能。

2024年7月,来自英国伦敦玛丽皇后大学的Claudia Langenberg教授在**The Lancet Digital Health(IF:23.8期刊发表了题为“Proteomic prediction of diverse incident diseases: a machine learning-guided biomarker discovery study using data from a prospective cohort study”**的研究论文。研究将血清蛋白质组数据与基因组数据、住院记录和癌症登记数据相结合,以系统地和前瞻性地评估血清蛋白质的潜力,从而在来自健康的信息和多基因风险评分(PRSs)的基础上改善对23种非传染性疾病和全因过早死亡的风险预测。

主要成果

研究整合蛋白质组学数据、基因组学数据和电子健康记录数据,系统地发现了少量的蛋白质特征可以用于预测23种不同疾病和全因死亡率。结果表明,仅五种蛋白质就超越了多基因风险评分在大多数疾病结局中的预测表现,并且在七种疾病中,能够超越常见风险因素提高预测精度。研究进一步开发了一个由10种蛋白质组成的少量多病共存特征,能够提高个体疾病的预测表现,超越常见的风险因素。

研究设计

【样本队列】

研究为基于欧洲癌症前瞻性调查-诺福克(EPIC-Norfolk)的前瞻性研究,研究对象为具有血清样本和全基因组基因型数据的参与者,随访总时长超过32974人年。研究对象为中年人群(基线年龄为40至79岁),来自英格兰诺福克的普通人群,招募时间为1993年3月至1997年12月。研究选择了在随访期内10年内发展为10种较为罕见疾病的参与者,并随机抽取了一个对照亚组,此外,该对照组还用于研究14种更常见的结局(n>70),包括全因早逝(指在75岁之前死亡;病例数为71至437,对照组为608至1556)。

实验设计】

研究使用机器学习模型从2923种血清蛋白中推导出少量的预测蛋白质模型,用于预测23种个体疾病的发生及全因早逝,并进一步推导出一个共同的少量蛋白多病共存特征,能够跨多种疾病进行预测。

图1 研究设计

研究结果

本研究中纳入的参与者的特征,包括随机抽取的亚组(n=1759)和在10年随访期间患上10种不常见疾病之一的参与者(n=989)。随机亚组参与者的基线平均年龄为58.79岁(SD 9.31);1759名参与者中,女性990人(56.28%),男性769人(43.72%)。患有10种不常见疾病之一的参与者平均年龄为64.56岁(8.08岁);989例中,女性482例(48.74%),男性507例(51.26%)。

首先,研究基于机器学习(LASSO)获得了针对24种不同结局的蛋白质模型,其中仅五种蛋白质便能够实现中位一致性指数(C-index)为0.67(四分位数范围0.62–0.75;图2)。这五种蛋白质的预测效果超过了使用2319种蛋白质训练的模型,在大多数疾病中,中位C-index高出0.04(四分位数范围0.01–0.06)。对于研究中的11种结局,单独使用蛋白质的模型(中位C-index 0.74 [四分位数范围0.66–0.80])与包含常见风险因素的基本患者信息模型(中位C-index 0.71 [0.65–0.75])表现相当,甚至更好。蛋白质单独使用的模型在17种疾病中也超过了包含多达722108个遗传变异的多基因风险评分(PRS)模型,五种蛋白质与PRS模型之间的中位C-index差异为0.13(四分位数范围0.10–0.17)。

图2 交叉验证的蛋白质生物标志物对23种疾病和全因过早死亡的预测性能

将这五种蛋白质加入到患者信息模型中,可以改善七种结局的预测性能:2型糖尿病、前列腺癌、全因早逝、慢性阻塞性肺疾病(COPD)、肺癌、肾脏疾病和心力衰竭(C-index改善范围0.02–0.11;图2)。其中,2型糖尿病(C-index改善0.11 [交叉验证误差±0.08–0.13])、前列腺癌(0.10 [0.06–0.13])和全因早逝(0.08 [0.05–0.11])的改善最大。蛋白质还改善了已具有强基线预测因子的模型的性能,如COPD(0.06 [0.04–0.09])和肺癌(0.05 [0.02–0.07])的吸烟状态。在这七种结局中,中位C-index为0.82(四分位数范围0.77–0.82)。中位净重分类改善(NRI)为0.28(四分位数范围0.19–0.37),大部分改进归因于病例的正确重分类(中位P[Up|Case];即病例的正确重分类概率0.30 [四分位数范围0.24–0.39];P[Down|Control];即对照的正确重分类概率0.01 [四分位数范围0.002–0.02])。对于五种疾病,PRS在患者信息模型中改善了预测(C-index改善范围0.02–0.27),包括乳腺癌、2型糖尿病、青光眼、心力衰竭和缺血性心脏病。将疾病特异性PRS与五种蛋白质结合到患者信息模型中,仅在2型糖尿病的预测中实现了协同改进(与患者信息模型相比,C-index改善0.14 [交叉验证误差±0.11–0.16];图2)。

接下来,作者尝试开发出一个通用的蛋白质组特征,用于预测多种疾病的发生,这将为临床转化提供更具成本效益的策略。前十种多病共存蛋白质在21种个体发生性疾病中的中位C-index为0.72(四分位数范围0.64–0.76)。这一结果在平均上高于疾病特异性蛋白质特征的表现,这可能表明存在共同的疾病机制。这十种蛋白质在六种疾病和全因早逝的预测中超过了患者信息模型(C-index变化范围0.02–0.06;中位C-index 0.81 [四分位数范围0.80–0.82];图3)。

图3 交叉验证了20种疾病和全因过早死亡的10种多病蛋白的预测性能

对于大多数提供改善的疾病特异性蛋白质特征,除了少数强候选蛋白外,其他蛋白质的选择得分显著下降,这表明生成更全面的蛋白质组特征可能没有太大价值(图4)。作者注意到,通过基于标准化选择得分高于固定阈值(从1到16种蛋白质)的方式,选择不同数量的蛋白质作为预测因子,其C-index与仅选择五种蛋白质时相似(Pearson’s r=0.99)。在强预测因子中,除了已建立的临床生物标志物外,还有一些在文献中鲜有报道但预测能力强的蛋白质,包括肺癌和COPD的C-X-C基序趋化因子配体17(CXCL17),以及肾脏疾病的平滑肌蛋白1(LMOD1)。

总体而言,在至少与患者信息模型相当或有所改进的疾病特异性标志物的前20种蛋白质中,26种蛋白质在两种或更多疾病之间共享(图4)。尽管这些结果表明与其他组学层次(如代谢组学)相比,重叠较少,但它们突显了一些蛋白质可能表示多个疾病共享的机制,从而为多病共存群体提供标志物。通过十种多病共存蛋白质特征,在测试的个体疾病中平均表现良好。这一特征包含了来自单病模型的共享标志物,如生长分化因子15、CUB(C1r/C1s/Uegf/骨形态发生蛋白)结构域含量蛋白1、表皮分泌A2受体、神经粘附分子和基质金属蛋白酶12(图4)。

图4 疾病前20种蛋白质的归一化特征选择得分,其中蛋白质至少等于或提高了患者信息模型的性能

总结

研究展示了广谱蛋白质组学平台在推动系统性和假设无偏的生物标志物发现策略中的价值。以及如何在选定疾病的常见风险因素基础上,进一步提高疾病预测提供了及时的见解,表明通过整合蛋白质组学、健康记录关联和机器学习,可以实现这一目标,为在越来越多的大规模队列中进行蛋白质组学分析的进一步进展提供了指导。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值