李飞飞团队新突破:具身智能的“空间大脑”来了!

ReKep:基于关系关键点约束的机器人操作时空推理

李飞飞团队

白话讲AI

李飞飞团队构造的系统:

先根据看到的和听到的指令,找到关键点、生成约束条件,再根据条件算出具体动作,而且这个过程不需要额外训练

为啥这么干呢?

过去的模型:

  1. 手工标注依赖:过去需要人工标注物体位置和动作约束,费时费力。

  2. 刚性模型限制:传统方法假设物体是刚性的(不能变形),无法处理衣物、液体等柔性物体。

  3. 泛化能力差:现有方法难以适应新任务或未知环境(例如厨房、仓库等)。

突然有个点子:

  1. 自动生成机器人操作的约束规则

  2. 让机器人实时调整动作以应对动态变化(如物体被移动)

实现目标要搞定啥?

要点一:关系关键点约束(ReKep)

  1. 关键点定义:将任务分解为多个“关键点”(比如茶壶的手柄、杯口边缘),每个关键点代表一个有意义的3D位置。

  2. 约束函数:用Python代码描述关键点之间的关系(例如“手柄必须对准杯口”),通过数学计算(如距离、角度)判断是否满足条件。

  3. 优势

    无需手工标注:通过AI模型自动识别关键点和生成约束。

    支持复杂任务:可处理多阶段任务(如先抓取、再倒水)和双手协作(如折叠衣物)。

要点二:自动化生成与实时优化

  1. 关键点自动提取:用视觉模型(DINOv2)从图像中识别关键点(如“杯子的边缘”)。

  2. 约束自动生成:用GPT-4o将语言指令(如“倒茶”)转化为代码形式的约束。

  3. 实时调整:优化算法每秒更新10次动作,能应对突发情况(如杯子被移动)。

商业化的点子

应用场景一:智能仓储与物流

  • 需求:电商仓库需要分拣、包装大量不同形状的货物。

  • ReKep的解决方案:

    1、自动识别箱子、胶带等关键点,生成“抓取-封箱-堆叠”的约束规则。

    2、双手机器人协作打包,效率提升。

  • 可行性:现有仓储机器人(如亚马逊Kiva)依赖固定路径,ReKep可增强其对不规则物体的处理能力。

应用场景二:家庭服务机器人

  • 需求:帮助老人或行动不便者完成日常任务(如整理房间、端茶倒水)。

  • ReKep的解决方案:

    1、通过语言指令(如“把药放在床头柜上”)生成动作序列。

    2、实时调整动作以防碰撞家具。

  • 落地预测:5-10年内可能进入高端家庭市场,但需解决安全性和成本问题。

应用场景三:医疗手术辅助

  • 需求:手术机器人需精确操作(如缝合、递送器械)。

  • ReKep的解决方案:

    1、定义手术工具的关键点(如针尖、镊子末端),生成“避开血管”等安全约束。

  • 挑战:医疗领域容错率极低,需通过严格认证,但长期潜力巨大。

对专业领域的伟大贡献

传统空间智能的瓶颈

  • 依赖预设规则(如“抓取位置必须离边缘5cm”),无法适应新场景。

  • 难以表达复杂关系(如“倒水时壶嘴必须对准杯口并倾斜30度”)。

ReKep的突破

  • 语义化关键点:将任务抽象为“关键点关系”,让机器理解“为什么需要这样操作”(例如“对准杯口是为了避免洒水”)。

  • 动态推理能力:通过实时优化调整动作,而非机械执行固定程序。

留下的坑

技术挑战

  • 关键点跟踪:如果物体被遮挡(比如手挡住杯子),系统可能丢失关键点。

  • 复杂物理交互:处理液体流动、布料变形等需要更精细的物理模型。

改进方向

  • 融合多模态数据:结合触觉、力反馈等信息提升鲁棒性。

  • 轻量化部署:优化算法以在低成本硬件(如家用机器人)上运行。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值