基于大模型智能体的出行行为模拟

概念和研究背景

随着城市化进程的不断推进,人们的日常活动呈现出多元化发展趋势,其空间分布范围也日益扩大。理解和预测人们的出行行为规律,对于城市交通网络的优化管理具有重要的现实意义。

什么是出行行为?

出行行为 (Travel Behavior) 是指“人们在空间上的活动与交通方式选择”,包括他们“何时”“为何”出行、“去哪里”“怎么去”“去了几次”等方面[1]。这类研究往往依赖出行调查数据、时空活动数据等手段,是城市交通规划、公共政策制定和智能交通系统的重要基础。

为什么需要“模拟”?

出行模拟 (Travel Simulation),即利用模型模拟城市居民或个体的出行模式与活动决策。其目的是更好地理解、预测甚至优化城市交通系统。但传统方法在以下三方面存在明显不足:

  1. 难以解释行为动因:深度学习模型往往只关注“是什么”,而忽略了“为什么”。
  2. 缺乏人类心理建模:许多模型缺乏对行为动机、计划链条、心理预期等因素的刻画。
  3. 泛化能力有限:多数模型只能在特定数据集或场景中工作,难以迁移。

大语言模型的到来

相比传统深度模型,大语言模型 (Large Language Model, 简称LLM) 具备更强的推理能力与角色模拟能力,可以更好地刻画复杂的行为逻辑、语义动机、历史背景与个体差异[2],为“类人化”的出行模拟研究提供了全新方法。

本文将通过调研相关文献,系统梳理与总结现有的基于大模型智能体的出行行为仿真研究,并提出未来有潜力的研究方向。

[1] https://en.wikipedia.org/wiki/Travel_behavior

[2] Liu, Tianming, et al. “Can large language models capture human travel behavior? evidence and insights on mode choice.” Evidence and Insights on Mode Choice, 2024.

img

相关研究梳理

根据研究的方法与目标的不同,当前研究中LLM在出行模拟中的应用大致可分为三类方向:

1. 出行行为精准生成:让模型“预测你去哪”

该方向主要聚焦于提升模型对出行行为的预测准确性,旨在基于历史数据挖掘用户的出行模式,从而实现对下一位置、轨迹或出行时间的高精度预测。这类任务通常具有明确的Ground Truth,便于采用量化指标进行评估。方法上,多采用深度学习与LLM的结合(如DL进行特征提取,LLM生成预测结果),或直接基于LLM对轨迹序列进行建模与预测。

2. 更加类人化的出行模拟:让模型“像人一样出行”

该方向关注出行行为的合理性与人性化,强调模拟人类在日常生活中真实的决策逻辑与行为动机。其任务通常缺乏固定的Ground Truth,更重视模拟行为的现实性与一致性。方法上常引入行为心理学或社会学理论(如需求层次理论、计划行为理论),并结合LLM Agent的记忆、反思、规划等认知能力构建Agent Workflow(智能体工作流),以生成贴近人类生活规律的活动轨迹。

3.个性化出行代理:定制化的出行计划

此类研究致力于构建能够与用户进行个性化交互的智能出行代理,具备理解用户偏好与出行需求的能力。

img

出行行为精准生成

LLM-Mob[3] 是一个基于LLM的人类出行预测框架,通过整合历史停留和上下文信息,捕捉长期和短期的出行依赖,提供时间感知的精准预测。该框架采用上下文提示,增强LLM的推理能力,使得预测结果更加准确。

Mobility-LLM[4] 通过结合LLM更好地理解用户出行行为。该方法通过引入“访问意图记忆网络”(VIMN)和“人类旅行偏好提示池”(HTPP),帮助模型理解用户的出行意图和偏好。具体来说,VIMN捕捉每个签到记录的访问意图,而HTPP池则根据不同领域(如职业、活动类型等)引导LLM更好地理解用户的旅行偏好。通过DL与LLM方法的结合,Mobility-LLM展示了更强的语义理解能力,并在少量训练数据下表现出色,具有较强的跨领域适应性。

img

图1.Mobility-LLM整体框架[4]

LLM-MDC[5] 主要研究next location prediction (下一位置预测) 的任务,其通过多轮连续对话机制和候选集增强技术,创新性地提升了位置预测的准确性。方法首先将多维旅行数据转化为移动性提示,通过多轮对话逐步推理,预测活动和位置。第一轮对话利用活动预测辅助缩小候选位置范围;第二轮则根据活动预测结果进行位置预测;第三轮通过深度学习模型的预测结果修正LLM的预测,确保高准确度。此外,候选集增强方法基于访问频率、近期效应和旅行子网络,优化候选集排名,从而提升了预测准确性和模型的可解释性。

img

图2. LLM-MDC整体框架[5]

[3] Wang, Xinglei, et al. “Where would i go next? large language models as human mobility predictors.” arXiv 2023.

[4] Gong, Letian, et al. “Mobility-LLM: Learning Visiting Intentions and Travel Preference from Human Mobility Data with Large Language Models.” NeurIPS 2024.

[5]Chen, Yong, et al. “Toward Interactive Next Location Prediction Driven by Large Language Models.” IEEE Transactions on CSS, 2025.

img

更加类人化的出行模拟

Chain-of-Planned-Behaviour (CoPB)[6] 结合了计划行为理论(TPB),创新性地提升了LLM在出行行为生成中的应用。其通过动态生成行为意图序列,并依次考虑态度、主观规范和感知行为控制等因素,进行逐步推理。每个生成步骤都会基于先前的意图调整当前的感知行为控制,从而确保生成的行为更加合理和符合人类逻辑。通过与重力模型结合,CoPB显著降低了计算成本,同时提升了出行行为的预测精度和多样性。

img

图3. CoPB整体框架[6]

Desire-driven Autonomous Agent (D2A)[7]提出了一种基于动机驱动的自主行为生成框架,模拟人类行为的复杂性。该方法通过建立一个动态的价值系统,结合马斯洛需求理论,将人的内在动机(如社交、健康、满足感)转化为具体的活动决策。D2A模型根据个体需求的优先级自动生成和选择活动,确保行为符合其内在动机,而非仅仅依赖外部任务指令。实验结果表明,D2A能够生成更具人类特征、合理且富有多样性的日常活动序列,优于传统的基于目标推理或特征驱动的代理方法。

img

图4. D2A整体框架[7]

MobAgent[8] 是一个基于LLM生成个性化出行日记的框架。其创新之处在于通过理解型模式提取与推理型日程生成两阶段,结合个人属性(如年龄、性别、收入等)来分析和生成真实的出行轨迹。首先,通过提取细粒度的出行模式,捕捉个体出行动机与行为规律;然后,利用递归推理策略生成符合实际的出行活动,确保生成的轨迹既符合个人特征,又贴合城市实际环境。该方法有效提高了出行数据生成的准确性和个性化程度。

img

图5. MobAgent整体框架[8]

LLMob[9] 提出了一个基于LLM的人类出行轨迹生成框架,创新性地结合了个体活动模式和动态动机,模拟城市居民的日常活动。该方法通过自一致性评估确保生成的轨迹与历史数据高度一致,并利用检索增强生成策略,在生成过程中整合多维动机信息(如个人需求、外部环境等),提升预测的准确性和解释性。与传统模型相比,LLMob能够更好地理解和模拟个体在不同情境下的活动选择,具有较强的灵活性和适应性,尤其在应对突发事件(如疫情)时,表现出色。

img

图6. LLMob整体框架[9]

Travel Survey Generation[10] 提出了一种基于LLM的城市出行评估方法,创新性地利用LLM生成旅行调查数据,解决了传统数据收集的隐私问题和高成本问题。该方法通过设计一套评估体系,从模式层、旅行层和活动链层三个维度对生成数据进行评估。研究发现,经过微调的LLM(如Llama-2)能生成与实际旅行调查数据高度相似的合成数据。该方法在多个美国大都市区的实验中显示出优异的效果,尤其在旅行模式和活动链的生成方面,表现优于传统的模式生活(POL)模拟方法。

[6] Shao, Chenyang, et al. “Chain-of-planned-behaviour workflow elicits few-shot mobility generation in LLMs.” arXiv 2024.

[7] Wang, Yiding, et al. “Simulating Human-like Daily Activities with Desire-driven Autonomy.” arXiv 2024.

[8] Li, Xuchuan, et al. “Be more real: Travel diary generation using llm agents and individual profiles.” arXiv 2024.

[9] Wang, JiaweiI, et al. “Large language models as urban residents: An llm agent framework for personal mobility generation.” NeurIPS 2024.

[10] Bhandari, Prabin, et al. “Urban mobility assessment using llms.” Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems. 2024.

img

个性化出行代理

APEC-Travel[11] 提出了一种创新的旅行规划代理系统,结合LLM和“代理行为宪法”(APEC)。其通过多轮对话主动挖掘个性化的旅行需求,优化了代理的准确性、主动性、效率和可信度四个维度的行为表现。APEC-Travel通过生成模拟对话数据并进行反复训练,以实现与旅行者的高效互动,并根据旅行者的个性化要求提供定制化的旅行计划。实验表明,APEC-Travel在准确度和代理行为表现上均优于基准模型,能够高效提取并优化用户偏好。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值