欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
道路路面标志线是保障交通安全和道路畅通的重要基础设施。然而,由于长期受到车辆碾压、自然风化等因素的影响,标志线容易出现磨损、模糊甚至消失的情况,给驾驶者带来安全隐患。传统的道路路面标志线检测方法依赖于人工巡检,效率低下且易受人为因素影响。因此,开发一种基于深度学习的自动化道路路面标志线检测与识别系统具有重要的现实意义和应用价值。
二、项目目标
本项目旨在利用YOLOv8(You Only Look Once version 8)算法,开发一个高效、准确的道路路面标志线检测与识别系统。该系统能够实时接收道路图像或视频数据,自动检测并识别出道路路面上的各种标志线,如停止线、导向箭头、车道分隔线等,并对其进行准确的分类和定位。通过该系统,交通管理部门可以及时发现并修复模糊、缺失的标志线,从而提高道路交通的安全性和通行效率。
三、技术方案
YOLOv8算法:YOLOv8是一种先进的实时目标检测算法,具有速度快、准确率高、模型小等优点。它采用了新的骨干网络架构、Anchor-Free检测头和损失函数,进一步提升了模型的性能。在本项目中,我们将基于YOLOv8算法构建道路路面标志线检测与识别模型。
数据集构建:为了训练YOLOv8模型,我们需要构建一个包含各种道路路面标志线的图像数据集。该数据集应包含不同道路类型、不同天气条件、不同光照条件下的道路图像,并对图像中的标志线进行准确标注。同时,为了增强模型的泛化能力,我们还将采用数据增强技术&#