【代码复现】RT-DETR2(pytorch版)环境部署及训练

简介:RT-DETR是第一个实时端到端目标检测器,RT-DETR2 是基于 Transformer 的端到端检测器的 实时目标检测模型 (Real-Time Detection Transformer) ,目标是进一步提升目标检测的性能和效率,尤其是在实时目标检测场景下,相较于原始版本进行了性能和架构优化,其设计理念是以 高效性实时性 为核心,结合 Transformer 模型的全局特征提取能力,为目标检测任务提供了兼具高性能和高速度的解决方案。

本教程配置:Windows10,CUDA11.8,python 3.8

1.代码拉取

代码链接:lyuwenyu/RT-DETR: [CVPR 2024] Official RT-DETR (RTDETR paddle pytorch), Real-Time DEtection TRansformer, DETRs Beat YOLOs on Real-time Object Detection. 🔥 🔥 🔥

git clone https://github.com/lyuwenyu/RT-DETR.git

2.虚拟环境

conda create -n rtv2 python=3.8 -y
conda activate rtv2 

3.安装依赖

cd rtdetrv2_pytorch
pip install six
pip install opencv-python
pip install torch==2.1.0+cu118 torchvision==0.16.0+cu118 torchaudio==2.1.0+cu118 -f https://download.pytorch.org/whl/cu118/torch_stable.html
pip install -r requirements.txt
pip install scipy

检查CUDA是否可用的命令(可不执行)

import torch
print("Is CUDA available:", torch.cuda.is_available())  # 应返回 True
print("CUDA version:", torch.version.cuda)  # 查看 CUDA 版本
print("Device count:", torch.cuda.device_count())  # 查看可用 GPU 数量

4.制作数据集

1)coco数据集格式

位置:rtdetrv2_pytorch > configs > dataset

修改:yolo的label(txt)转coco的annotations(json)代码为yoyo2coco.py【网上随便都能搜到】

2)配置yaml

位置:rtdetrv2_pytorch > configs > dataset > coco_detection.yml

修改:(1)num_classes;(2)train_dataloader的img_folder和ann_file;(3)val_dataloader的img_folder和ann_file;

img_folder: ./configs/dataset/coco/train/
ann_file: ./configs/dataset/coco/annotations/instances_train.json

5.训练

 1)修改train.py

位置:rtdetrv2_pytorch > tools > train.py

修改:第45行添加:default='./configs/rtdetrv2/rtdetrv2_r50vd_6x_coco.yml'

2)修改训练参数

位置:rtdetrv2_pytorch > configs > rtdetrv2 > include > dataloader.yml

修改:epoch

3)训练运行

位置:RT-DETR-main > rtdetrv2_pytorch > python tools/train.py

python tools/train.py

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值