伴随矩阵和原矩阵的关系
r(A)|r(A*)
|:-----------😐 :-------------😐:-------------😐:-------------😐:-------------😐:-------------😐:-------------😐
n|n|
n-1|1|
<n-1|0
r(A)=n,则|A|≠0,|A||A*|=1,|A*|≠0,所以这时候r(A*)=n
r(A)=n-1,则rank A*>=1,AA*=0,rank(A*)=1
r(A)<n-1,则A的代数余子式都为零,A*=0,r(A*)=0
A
A
∗
=
∣
A
∣
E
,
对式子两边取行列式,可得
∣
A
∗
∣
=
∣
A
∣
n
−
1
AA^*=|A|E,对式子两边取行列式,可得|A^*|=|A|^{n-1}
AA∗=∣A∣E,对式子两边取行列式,可得∣A∗∣=∣A∣n−1
如果AB=O,那么r(A)+r(B)<=n (n为A的列数,B的行数)
-
假设特情况下B为A*,因为AA*=|A|E,所以AA*=|A|E=O;所以A*的列向量都是AX=0的解。
所以:A*的列向量可由AX=0的基础解系线性表示。
所以r(A*)<=AX=0的基础解系的秩=n-r(A)。故有r(A)+r(A*)<=n.
然后可推广到一般情况:若AB=0,A,B分别是m行n列,n行s列矩阵,则r(A)+r(B)<=n。证明如下: -
所以B的列向量都是AX=0的解。
所以:B的列向量可由AX=0的基础解系线性表示。
所以r(B)<=(AX=0的基础解系的秩)=n-r(A)。故有r(A)+r(B)<=n.
由伴随矩阵求原矩阵(当伴随矩阵的秩不为零时)
A
=
(
A
∗
∣
A
∣
)
−
1
=
∣
A
∣
∗
(
A
∗
)
−
1
=
∣
A
∣
∗
n
−
1
(
A
∗
)
−
1
A=(\frac{A*}{|A|})^{-1}=|A|^{*}(A^{*})^{-1}=\sqrt[n-1]{|A|^{*}}(A^{*})^{-1}
A=(∣A∣A∗)−1=∣A∣∗(A∗)−1=n−1∣A∣∗(A∗)−1
伴随矩阵计算:代数余子式矩阵–的–转置