隐函数求导与椭圆的切线

过 椭 圆 x 2 a 2 + y 2 b 2 = 1 上 一 点 的 切 线 方 程 为 x 0 x a 2 + y 0 y b 2 = 1 y ′ = − b 2 x a 2 y , 则 斜 率 k = − b 2 x 0 a 2 y 0 切 线 方 程 y − y 0 = − b 2 x 0 a 2 y 0 ( x − x 0 ) 带 入 x 0 2 a 2 + y 0 2 b 2 = 1 , 则 x 0 x a 2 + y 0 y b 2 = 1 过椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1上一点的切线方程为\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1\\ y'=-\frac{b^2x}{a^2y},则斜率k=-\frac{b^2x_0}{a^2y_0}\\ 切线方程y-y_0=-\frac{b^2x_0}{a^2y_0}(x-x_0)\\ 带入\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1,则\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1 a2x2+b2y2=1线a2x0x+b2y0y=1y=a2yb2x,k=a2y0b2x0线yy0=a2y0b2x0xx0a2x02+b2y02=1a2x0x+b2y0y=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值