过 椭 圆 x 2 a 2 + y 2 b 2 = 1 上 一 点 的 切 线 方 程 为 x 0 x a 2 + y 0 y b 2 = 1 y ′ = − b 2 x a 2 y , 则 斜 率 k = − b 2 x 0 a 2 y 0 切 线 方 程 y − y 0 = − b 2 x 0 a 2 y 0 ( x − x 0 ) 带 入 x 0 2 a 2 + y 0 2 b 2 = 1 , 则 x 0 x a 2 + y 0 y b 2 = 1 过椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1上一点的切线方程为\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1\\ y'=-\frac{b^2x}{a^2y},则斜率k=-\frac{b^2x_0}{a^2y_0}\\ 切线方程y-y_0=-\frac{b^2x_0}{a^2y_0}(x-x_0)\\ 带入\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1,则\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1 过椭圆a2x2+b2y2=1上一点的切线方程为a2x0x+b2y0y=1y′=−a2yb2x,则斜率k=−a2y0b2x0切线方程y−y0=−a2y0b2x0(x−x0)带入a2x02+b2y02=1,则a2x0x+b2y0y=1
隐函数求导与椭圆的切线
最新推荐文章于 2024-10-06 09:38:14 发布