三门问题
向 朋 友 表 白 , 朋 友 要 么 接 收 要 么 不 接 受 , 所 以 成 功 的 概 率 是 1 2 对 吗 ? 一 般 不 对 。 有 两 个 选 项 不 代 表 两 个 选 项 等 概 率 。 向朋友表白,朋友要么接收要么不接受,所以成功的概率是\frac{1}{2}\\ 对吗?一般不对。有两个选项不代表两个选项等概率。 向朋友表白,朋友要么接收要么不接受,所以成功的概率是21对吗?一般不对。有两个选项不代表两个选项等概率。
解法一:贝叶斯公式
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( B ) 后 验 概 率 = 先 验 概 率 ∗ 可 能 性 函 数 P(A|B) = P(A)\frac{P(B|A)}{P(B)}\\ 后验概率 = 先验概率*可能性函数 P(A∣B)=P(A)P(B)P(B∣A)后验概率=先验概率∗可能性函数
解法二:
假 设 你 永 远 都 不 会 转 换 选 择 , 赢 的 概 率 永 远 是 1 3 假 设 你 永 远 都 会 转 换 选 择 , 赢 得 汽 车 的 概 率 是 2 / 3 , 与 初 次 选 择 时 选 中 有 山 羊 的 门 的 概 率 一 样 。 假设你永远都不会转换选择,赢的概率永远是\frac{1}{3}\\ 假设你永远都会转换选择,赢得汽车的概率是2/3,与初次选择时选中有山羊的门的概率一样。 假设你永远都不会转换选择,赢的概率永远是31假设你永远都会转换选择,赢得汽车的概率是2/3,与初次选择时选中有山羊的门的概率一样。
思考:
如 果 将 3 推 广 到 100 , 即 在 玩 家 选 择 1 个 门 后 , 主 持 人 将 剩 余 的 98 个 门 都 打 开 , 而 且 每 次 都 这 样 进 行 , 如 果 你 是 玩 家 , 你 会 选 择 换 吗 ? 如果将3推广到100,即在玩家选择1个门后,主持人将剩余的98个门都打开,\\ 而且每次都这样进行,如果你是玩家,你会选择换吗? 如果将3推广到100,即在玩家选择1个门后,主持人将剩余的98个门都打开,而且每次都这样进行,如果你是玩家,你会选择换吗?