MWORKS 2024a控制系统工具箱模型线性化器应用

一、为什么要研究线性化

研究线性化前,首先需要了解什么是线性系统。线性系统指的是同时满足齐次性与可加性的系统。由于线性系统容易处理,其在自动控制理论、信号处理、电信等领域上的应用极其广泛。像经典控制理论中的控制律设计方法一般都要求系统是线性的。但现实中几乎所有元件或系统的运动方程都是非线性方程,而非线性微分方程的求解和控制性能研究非常复杂。所幸的是,大多数情况下非线性系统是可以在其工作点附近作线性化近似。基于工作点附近的近似线性模型通过经典控制理论开展分析设计后,将控制律用于原始的非线性系统,经过微调后,也能取得满意的控制效果。而面向时变的非线性系统,则可以在运行阶段,选取多个工作点进行分段线性化,再据此设计控制规律。

到这里,核心问题就聚焦到了非线性系统的线性化处理。上过高等数学的同学可能会不以为然,线性化不就是一阶泰勒展开吗?这再简单不过了。

△ 线性化原理示意

既如此,为什么还要研究线性化?假设我们面向一个复杂的工程系统模型,设计人员需要优化其控制器参数,线性化的步骤不可避免。

△ 某飞行空气循环制冷系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值