apollo自动驾驶教程学习笔记-自动驾驶行业概述4-2

本文介绍了Apollo自动驾驶教程中的关键技术,包括高精地图在规划中的作用,GPS、RTK、IMU、几何定位等多种定位方式,以及lidar、camera等传感器的特性。还探讨了信息融合、模式识别、决策控制的重要性,强调了云和仿真的应用,以提升自动驾驶算法的性能。
摘要由CSDN通过智能技术生成

教程:http://bit.baidu.com/Course/detail/id/271.html
老师:David Zhou,百度Apollo平台产品负责人

自动驾驶汽车有很多技术需要去攻克,比如环境感知、定位、传感器信息融合、模式识别、状态预测、决策规划、以及云和仿真技术。

地图

自动驾驶技术用到的地图是高精地图,和传统的导航地图不一样,高精地图是车道级别的地图,地图上还有交通标志和红绿灯,以及一些静态障碍物。
高精地图可以有助于自动驾驶技术的规划,并且减少预判算法开销。

定位

自动驾驶技术的定位有GPS、RTK、IMU、几何定位等。
GPS就是通过卫星与车辆之间的距离,做几何运算,得出相对位置,根据卫星的位置再得到绝对位置。GPS现在比较普及,但其问题是定位精度不高,不稳定,有些位置接收不到;
RTK技术是弥补GPS定位精度差的问题,通过在路边设置一些基站来接收GPS信号,然后与车辆接收到的GPS信号做差分运算,去掉GPS信号的不稳定效果。但需要基站,大范围部署成本高;
IMU是惯性导航,通过速度、加速度、角速度等物理量来计算车辆下一时刻的位置,可以弥补GPS的抖动问题。但IMU会有计算误差;
几何定位是在一些接收不到GPS信号的位置,如隧道,能够通过判断与周围静态障碍物的位置几何关系,来计算当前车辆位置;

传感器

最重要的传感器是lidar,lidar是laser radar,就是通过激光作为传输对象的雷达,lidar的原理就是光速测距,距离算的比较准,能达到厘米到毫米的距离;缺点是lidar很难识别雾霾等异常的天气状况,容易误判;radar没有这个问题,但radar对静态物体的误判比较大,因为radar是毫米波雷达,容易绕过去一些障碍物;
camera是另一个重要的传感器,它能够看到颜色,如红绿灯,是另外一些重要的环境信息;camera对距离的估算误差较大;
lidar有几种,如机械转轴(有机械损耗)、棱镜转轴(容易受路况颠簸产生错误)、相控阵、flash lidar(识别距离短)

信息融合

需要多种传感器数据的信息匹配,对时间同步精度要求高。

模式识别

能够识别周围环境中的物体是什么,同时还要能识别这些物体将会怎么变化,比如一个人,下一时刻可能不在原来的位置了,要车辆提前做预测。

决策控制

当获得信息以后,将会做出车辆的控制决策,主要原则:

  • 在所有约束条件下要寻找到一条最优路径;
  • 要保证车辆的平滑性,尤其是乘客的主观感受要平滑;

by-wire control

车辆要时刻受电脑控制(具体还没弄懂这块要表达什么意思,是中央控制器吗);

云和仿真

所有车辆会联网,将数据和决策信息上传到统一的云上,然后其他车辆可以使用这些经验去优化自己的算法,从而所有车辆的控制算法可以互相提高;通过还原历史场景,建议仿真的场景模型,车辆算法在仿真场景下做模拟,提高车辆对未来类似状况的决策准确度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值