代码部分
int main ( )
取消参数传入
if (argc != 3) {
cout << “usage: feature_extraction img1 img2” << endl;
return 1;
}
删除此段代码,因为程序不需要从外面传入图片了
[ Mat img_1 = imread("/home/slambook2/ch7/1.png", CV_LOAD_IMAGE_COLOR);
直接将图片地址写入,将图片变换为图像矩阵。CV_LOAD_IMAGE_COLOR保留图片的彩色信息
完整代码
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <chrono>
using namespace std;
using namespace cv;
int main ( )
{
//-- 读取图像,assert检查图像是否为空,assert表达式为0时报错
Mat img_1 = imread("/home/automobile/wcm/slambook2/ch7/1.png", CV_LOAD_IMAGE_COLOR);
Mat img_2 = imread("/home/automobile/wcm/slambook2/ch7/2.png", CV_LOAD_IMAGE_COLOR);
assert(img_1.data != nullptr && img_2.data != nullptr);
//-- 初始化
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
//detect为detector结构体类型成员,detector中的detect函数发现的关键点存储在keypoints_1/2中
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
detector->detect(img_1, keypoints_1);
detector->detect(img_2, keypoints_2);
//-- 第二步:根据角点位置计算 BRIEF 描述子
//compute为descriptor结构体类型成员,descriptor中的compute函数将关键点转换为描述子并存储在descriptors_1/2中
descriptor->compute(img_1, keypoints_1, descriptors_1);
descriptor->compute(img_2, keypoints_2, descriptors_2);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;
//带有关键点的图片存储在img_1中
Mat outimg1;
drawKeypoints(img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
imshow("ORB features", outimg1);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
//匹配的descriptors存储在matches中
vector<DMatch> matches;
t1 = chrono::steady_clock::now();
matcher->match(descriptors_1, descriptors_2, matches);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
//-- 第四步:匹配点对筛选
// 计算最小距离和最大距离
//min_max为bool型结构体,结构体中distance成员为double型
auto min_max = minmax_element(matches.begin(), matches.end(),
[](const DMatch &m1, const DMatch &m2) { return m1.distance < m2.distance; });
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;
printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector<DMatch> good_matches;
for (int i = 0; i < descriptors_1.rows; i++) {
if (matches[i].distance <= max(2 * min_dist, 30.0)) {
good_matches.push_back(matches[i]);
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
imshow("all matches", img_match);
imshow("good matches", img_goodmatch);
waitKey(0);
return 0;
}
2 CMakeLists.txt部分
project(ch7)
ch7是我的项目名
set(OpenCV_DIR /path/to/opencv/build)
解决CMake找不到opencv库
target_link_libraries(ch7 ${OpenCV_LIBS})
ch7为项目名
CMakeList.txt内容
cmake_minimum_required(VERSION 3.10)
project(ch7)
set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_FLAGS "-std=c++11 -o2 ${SSE_FLAGS} -msse4")
list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
set(OpenCV_DIR /path/to/opencv/build)
find_package(OpenCV 3 REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
add_executable(ch7 cmake-build-debug/orb_cv.cpp )
target_link_libraries(ch7 ${OpenCV_LIBS})
原文地址
https://blog.csdn.net/qiao_syf/article/details/106448597?ops_request_misc=%25257B%252522request%25255Fid%252522%25253A%252522161201716716780262519246%252522%25252C%252522scm%252522%25253A%25252220140713.130102334.pc%25255Fall.%252522%25257D&request_id=161201716716780262519246&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v29-5-106448597.pc_search_result_cache&utm_term=slambook%252Fch7%252Ffeature_extraction.cpp