YOLOv11融合特征细化前馈网络 FRFN[CVPR2024]及相关改进思路


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总-CSDN博客 


《Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration》

一、 模块介绍

        论文链接:Adapt or Rerish

        代码链接:https://github.com/joshyZhou/AST

论文速览:基于 transformer 的方法在图像恢复任务中取得了有希望的性能,因为它们能够对长距离依赖性进行建模,这对于恢复清晰图像至关重要。尽管不同的高效注意力机制设计已经解决了与使用 transformer 相关的密集计算,但它们通常涉及冗余信息和来自不相关区域的嘈杂交互,因为要考虑所有可用的标记。在这项工作中,作者提出了一种自适应稀疏变压器 (AST) 来减轻不相关区域的噪声交互,并消除空间和通道域中的特征冗余。AST 包括两个核心设计,即自适应稀疏自注意力 (ASSA) 模块和特征细化前馈网络 (FRFN)。具体来说,ASSA 是使用双分支范式自适应计算的,其中引入稀疏分支以过滤掉低查询键匹配分数对聚合特征的负面影响,而密集分支则确保通过网络有足够的信息流来学习判别性表示。同时,FRFN 采用增强和简化方案来消除通道中的特征冗余,从而增强清晰潜影的恢复。常用基准的实验结果表明,我们的方法在多项任务中具有多功能性和竞争性能,包括去除雨纹、去除真雾和去除雨滴。

总结:一种高效的特征提取模块,通过稀疏注意力ASSA模块与特征细化前馈模块FRFN组成。


二、 加入到YOLO中

2.1 创建脚本文件

        首先在ultralytics->nn路径下创建blocks.py脚本,用于存放模块代码。

2.2 复制代码        

        复制代码粘到刚刚创建的blocks.py脚本中,如下图所示:

class FRFN(nn.Module):
    def __init__(self, dim=32, hidden_dim=128, act_layer=nn.GELU, drop=0., use_eca=False):
        super().__init__()
        self.linear1 = nn.Sequential(nn.Linear(dim, hidden_dim * 2),
                                     act_layer())
        self.dwconv = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, groups=hidden_dim, kernel_size=3, stride=1, padding=1),
            act_layer())
        self.linear2 = nn.Sequential(nn.Linear(hidden_dim, dim))
        self.dim = dim
        self.hidden_dim = hidden_dim

        self.dim_conv = self.dim // 4
        self.dim_untouched = self.dim - self.dim_conv
        self.partial_conv3 = nn.Conv2d(self.dim_conv, self.dim_conv, 3, 1, 1, bias=False)

    def forward(self, x):
        # bs x hw x c
        c, bs, hh, hw = x.size()
        # hh = int(math.sqrt(hw))
        #
        # # spatial restore
        # x = rearrange(x, ' b (h w) (c) -> b c h w ', h=hh, w=hh)

        x1, x2, = torch.split(x, [self.dim_conv, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)

        # flaten
        x = rearrange(x, ' b c h w -> b (h w) c', h=hh, w=hw)

        x = self.linear1(x)
        # gate mechanism
        x_1, x_2 = x.chunk(2, dim=-1)

        x_1 = rearrange(x_1, ' b (h w) (c) -> b c h w ', h=hh, w=hw)
        x_1 = self.dwconv(x_1)
        x_1 = rearrange(x_1, ' b c h w -> b (h w) c', h=hh, w=hw)
        x = x_1 * x_2

        x = self.linear2(x)
        # x = self.eca(x)

        return rearrange(x, ' b (h w) (c) -> b c h w ', h=hh, w=hw)

2.3 更改task.py文件 

       打开ultralytics->nn->modules->task.py,在脚本空白处导入函数。

from ultralytics.nn.blocks import *

        之后找到模型解析函数parse_model(约在tasks.py脚本中940行左右位置,可能因代码版本不同变动),在该函数的最后一个else分支上面增加相关解析代码。

        elif m is FRFN:
            c2 = ch[f]
            args = [ch[f]]

2.4 更改yaml文件 

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, FRFN, []]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


 2.5 修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/11/yolo11.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客

三、相关改进思路(代码见2024/11/8群文件)

        根据FRFN的特性,可以使用该模块与C2f、C3、C3K2等模块融合,相关结构图如下。相关自研模块与该模块融合代码见群文件。上百种深度学习改进模块,欢迎点击下方小卡片与我联系。

 ⭐另外,融合上百种深度学习改进模块的YOLO项目仅119(含百种改进的v9),RTDETR119,含高性能自研模型,更易发论文,代码每周更新,欢迎点击下方小卡片加我了解。⭐


 

### FRFN 模块概述 FRFN(Feature Refinement Fusion Network)是一种常用于计算机视觉领域中的网络结构设计,主要用于特征提取、融合以及优化的任务。它通过多尺度特征交互和上下文信息增强来提升模型性能[^1]。 具体而言,FRFN 的核心功能在于对输入数据的不同层次特征进行精细化处理并实现高效的信息传递。这种机制能够显著改善目标检测、图像分割以及其他密集预测任务的表现。其主要特点包括但不限于: - **多层次特征融合**:通过对低层细节特征与高层语义特征的有效结合,增强了模型对于复杂场景的理解能力。 - **自适应权重调整**:引入注意力机制或动态加权策略,使得不同区域的重要性得以灵活反映。 - **轻量化架构设计**:尽管具备强大的表达能力,但整体计算开销较低,适合部署于边缘设备上运行。 以下是基于 Python 实现的一个简化版 FRFN 构件示例代码片段: ```python import torch.nn as nn class FRFN(nn.Module): def __init__(self, in_channels, out_channels): super(FRFN, self).__init__() # 定义卷积操作以完成特征映射转换 self.conv_low_level = nn.Conv2d(in_channels=in_channels//2, out_channels=out_channels//2, kernel_size=1) self.conv_high_level = nn.Conv2d(in_channels=in_channels//2, out_channels=out_channels//2, kernel_size=3, padding=1) # 注意力模块可选组件 self.attention_module = AttentionBlock(out_channels) def forward(self, low_features, high_features): mapped_low = self.conv_low_level(low_features) mapped_high = self.conv_high_level(high_features) fused_feature = mapped_low + mapped_high refined_output = self.attention_module(fused_feature) return refined_output ``` 上述代码定义了一个基础版本的 FRFN 类型神经网络单元,其中包含了两个分支分别负责处理来自浅层网络部分所捕获到的小范围局部纹理特性以及深层网络输出的大视野全局概念描述向量;最后再经由注意力建模进一步加强关键位置贡献度从而获得更优解空间表示形式。 ### 关于资料文档下载及使用说明 针对希望深入研究该主题的研究人员或者开发者来说,可以从如下几个方面入手获取更多关于 FRFN 模块的技术支持材料: - 访问官方开源项目主页链接地址【1】https://github.com/amusi/CVPR2024-Papers-with-Code 获取最新论文列表及其对应源码实现; - 利用 AMiner 学术搜索引擎查询相关学者发表成果详情页网址【2】https://www.aminer.cn/ 寻找相似课题方向延伸阅读参考资料集合。 同时提醒各位使用者,在实际应用过程中需特别留意版权归属问题以及遵循各平台规定条款合法合规地引用他人劳动结晶成果内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值