yolov5 github 主页–各个模型的评价指标
size 图片分辨率的大小
speed 处理速度
params 网络参数量
tutorials 教程
如何训练自己的数据集
detect.py 的使用, 结果存放在
python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
使用pycharm 进行预测
将其中的代码都设置成default
parser
通过命令行设置运行py文件之中的参数
--image-size
参数
在parser中的image size(640), 在运算之前, 会将图片resize成640,
--iou-thres
参数
交除以并, 大于这个值就将框合并
action
参数
很只要指定此参数就为真
--view-img
可视化结果 对于视频可以逐帧检测图标
--save-txt
存储实验结果至txt文件, 类别+两个顶点坐标
--save-conf
在上述txt文件中添加置信度
--nosave
不存储视频和图片
--classes 0
或者--classes 0 1 2
探索图片的当中是否有类别为0的物品
也可以指定多个参数(nargs=’+’
--augment
参数
是否增强检测性能
--update
需要访问git
是否只保留网络当中的预测部分, 这样可以提升性能
--project
参数
实验结果存储文件夹
默认为runs/detect中
--name
参数
实验结果目录名字
右上角所运行文件中有 run configuration
里面的parameters 可以配置加入上述参数 可以添加多个参数
实际上右键run 相当于输入 python.py
parameters中的参数相当于 python.py 后面的参数
--agnostic-nms
参数
是否增强nms
--exist-ok
参数
检测保存实验结果的文件夹是否存在,不设置就是始终新建一个文件夹保存实验结果