之前在毕设里做过的一些理论分析,我想并非全无意义,这边罗列下来:
一、四元数定义
Hamilton 在 1843 年经过了长达十多年的思考,试图将复数归纳为三维,在此过程中发现了四元数。 利用三个复数来构造四维空间。正如在三维空间内去表述二维的旋转是十分容易的,以此类推,在四维空间中去表述三维的旋转要容易和简便的多。事实上也的却如此,并且利用四元数表示旋转相比较于欧拉旋转来说,最大的优点就是有效避免了万向节锁(Gimbal Lock)。带来万向节锁的本质原因还是在于,利用欧拉旋转去表述三维物体旋转的时候, 是按照一定的坐标顺序,并且存在着第一层级、第二层级和第三层级。 但两层级在同一水平面的时候就会带来万向节锁的问题。无法正确的去表示原来三维物体的旋转。此外,利用四元数表示三维旋转的最直接的优点就是,表示旋转仅仅只需要 4 个数,而矩阵旋转需要 9 个数来表述。这样一来大大的简化了计算(进行两次旋转的时候只需要进行 16 次乘法和 12 次加法操作)。下面给出四元数的定义:
其中 i,j,k 均是虚数,满足以下规律:
并且对单位四元数进行定义,