在流量红利殆尽的今天,不同游戏品类的从业者常常面临着一个相似的问题:如何通过用户的行为轨迹找到每一个玩家“氪金”的可能性?
许多游戏团队砸下大把资源,一门心思优化付费功能,却收效甚微,其实,问题的关键往往不在于付费设计本身,而在于对用户决策路径的理解程度。
付费转化是一个系统工程,从用户首次接触产品到最终完成支付,中间存在多个关键环节:
-
用户能不能顺利看到那些有价值的内容?
-
付费的时候,流程是否顺畅,有没有什么地方“卡壳”?
-
针对不同消费能力的用户,有没有给出不一样的策略?
这些看似不起眼的问题,却会实实在在影响用户是否会买单。本篇文章我们将聚焦“产品付费路径分析”,用实战经验告诉你:怎么拆、拆多细、拆到哪,才能把“用户为什么买单”这件事搞明白,手把手给大家呈现一个可复用的付费路径优化框架。
读懂用户行为
解锁付费密码
游戏数据分析的本质是通过数据透视用户在游戏中的“渗透”与“转化”,而付费路径的优化则是这一逻辑的终极落脚点。无论是日常监控、功能测试还是竞品对标,本质上都是通过多维对比(时间、人群、版本)找到提升用户从“看见”到“付费”的关键因素。
对游戏来说,数据分析的核心聚焦于理解行为渗透与付费转化这两个关键维度。为实现精准分析,这需要建立一套完整的指标体系,通常会采用 OSM (Object, Strategy, Metrics) 或者 GSM (Goal, Signal, Metrics) 模型,两种模型分别代表了两种不同的从业务目标出发拆解指标的思维方式。
进一步可以这样理解:OSM 从达成业务目标的用户路径上的痛点出发,思考解决痛点可能采取的策略;而 GSM 则是从反映业务目标的用户行为信号出发,再思考如何定量地描述这些用户体验的定性信号。这与前文所讲的关注用户行为转化逻辑一脉相承,都是在围绕提升用户价值与商业变现展开。
在互联网流量红海的今天,游戏买量投放造成的产品运营成本压力日益增加。在此背景下,游戏内购已经成为大多数产品盈利逻辑的核心功能。如何优化收入模型、提高付费收入,精打细算已经成为各位开发者和运营者的重中之重,仅仅根据单一指标进行直觉判断已经不足以让产品在激烈的竞争中长期生存。
围绕产品付费的核心指标,各个游戏可以根据各自产品特有的商业模式、产品阶段和功能模块,搭建属于自己的一套指标体系。在这套体系中,可能不同阶段、不同品类的游戏都有自己侧重的拆解方式,团队关注的过程指标也不尽相同,但毋庸置疑的是,提高用户的付费转化率、延长用户付费生命周期必定是提升付费的策略重点。
追踪用户路径
发现变现契机
梳理产品付费路径极为关键,这并非只是简单的流程罗列,而是深入剖析用户从产生付费意愿到完成支付这一过程中的每个细微环节,为产品优化与精准营销提供有力支撑,挖掘更多商业价值。
-
付费路径的梳理
随着游戏功能的日益强大,用户的路径越来越错综复杂,枚举各个用户群体的路径不现实也没必要。在梳理用户路径,尤其是以付费为导向的路径中,我们要遵从“目的性”、“代表性”和“指向性”。
-
目的性
所谓“目的性”,就是我们梳理用户在游戏里的行为路径时,不要想着把所有路径都完整展现出来,而是要根据这次分析的目的,有针对性地选择。
比如说,我们现在关心首页的用户信息流行为对付费的影响时,就要重点看用户怎么浏览、点击信息流,以及这些操作之后,他们是怎么一步步付费的。至于从历史收藏、主动搜索进来的流量,这时候就不是我们关注的重点了。
-
代表性
当我们确定了要研究的用户行为路径有多长后,需要挑出具有代表性的行为节点。我们可以参考产品是怎么设计的,再结合实际业务经验,选择用户行为的关键节点进行埋点日志记录,进而完成路径梳理。而在产品测试阶段,我们也可以利用桑基图确定用户的主流路径,甄选出关键的用户行为。
-
指向性
在每次分析的过程中,分析师总是需要明确此次分析需要洞察、诊断甚至改善的关键业务指标是什么。比如说分析产品的付费路径,那付费这个环节肯定是关键。所以梳理路径时,我们重点关注的,就得是那些最终能引导用户付费的行为。
数数科技的游戏大数据引擎 ThinkingEngine(简称“TE 系统”)的“路径分析”模型可以支持“结束事件”的选择,在 TE 系统中,我们可以选择付费终止事件作为用户行为的终点,这样就能很清楚地看到用户在付费之前都做了些什么。
TE 系统 Demo 截图
通常,游戏的活跃维度会围绕核心玩法和运营活动展开,而付费路径则往往以商城、抽卡、皮肤购买、礼物打赏等作为终点。同样,App 的核心逻辑也是如何高效引导用户进入付费场景促成付费行为。
这里我们举个 App 的例子,方便大家能更快理解:
如某社交语聊房 App 超过 85%的收入,都是靠用户在房间送礼,平台拿提成赚来的。所以,想要让产品多赚钱,就得重点研究怎么优化用户在房间里送礼的流程。
用户送礼物的流程大概是这样:进入页面→模块互动→进入房间→房间互动→房间送礼。我们需要让这个流程更加顺畅。
另外,用户进入语聊房间的方式有很多,比如在首页匹配房间、看首页推荐的房间、在首页搜索房间,或者通过动态头像、聊天找人、关注列表、历史记录等等方式进入。这些进入房间的方式,还有房间的类型、送礼的方式、礼物的类型,都对用户最终会不会送礼有很大影响,分析的时候都需要考虑进去 。
2. 指标体系的设计
指标体系能让我们时刻清楚自己分析的目的是什么。搭建指标体系时,如果把用户行为路径梳理清楚并加进去,就能精准发现用户在每个操作步骤中遇到的问题,为产品改进提供明确方向。
拿语聊房来说,它最关注的就是付费收入。为了提高收入,我们把这个总指标拆分成一些小指标,比如页面流量、模块点击率、进房率、送礼率、人均送礼金额。
通过研究这些小指标,我们就能找到用户在操作时的痛点,思考如何去提升体验感。在改进体验的过程中,还会用更细致的小指标来看看优化是否起到了效果。这样,就建立起了一套从总指标到子指标,再到更细分指标的体系。
下图以语聊产品为例,我们可以将内购流水的总指标抽象地拆解为 O1~O4 四个自指标,再分别从投放优化、活跃玩法到付费点优化去确定每个业务策略的度量指标。
解析数据规律
构建优化闭环
在前序将一些关键指标拆解好了之后,接下来,我们可以从以下几个角度,继续分析用户在游戏里的关键行为:
-
流量分布
流量即为王道,即使有些 PV 显得 trivial,但是用户活跃度高且持续的区域,就可以是产品挖掘用户转化率潜力的地方。
TE 系统 Demo 截图
2. 模块渗透率(导流效率)
研究流量,是为了结合流量流向的转化率进行分析。有些模块流量很大,而且能高效把用户引导到其他关键环节,这些模块就是当下产品优化的重点。还有些模块,虽然流量少,但引导用户的效率很高,我们也可以试着加大这些模块的流量入口。
要分析流量效率和它对目标的贡献度分布,可以用 TE 系统里的“归因分析”模型。以语聊产品举例,下图中,“我的”界面在有效触发率(点击转化率)和进房贡献度(进房次数中的比例)都排第一。这说明这个界面流量最多,用户在此页面拥有最多的流量和最高的直播间进房率。也能看出,更多用户习惯直接进入自己熟悉或者之前浏览过的房间。
TE 系统 Demo 截图
3. 付费贡献度分析
当我们发现某个模块的进房效率和流量高,希望知道以某个目的进入房间的用户,TA 的付费欲望如何。
“归因分析”仍然能发挥重要作用,付费率和付费贡献度的同时展示,满足了我们对流量大小和质量的同时监控。
TE 系统 Demo 截图
4. 用户分层分析
我们可以把不同使用阶段的用户分开研究,尝试验证猜想:是否随着用户使用游戏的时间越长,付费越多者就越喜欢通过自己熟悉的方式进入房间,然后在里面消费。
TE 系统 Demo 截图
最后总结一下:梳理付费路径、搭建指标体系,是构建用户分析方法论的重要基础。它们帮助我们理清分析方向、明确关注重点,而专题分析则是在此基础上的深入探究。在这个过程中,需要着重关注用户在不同模块的流量数量和质量,以此洞察用户行为特点。
付费路径的梳理不是终点,而是破解用户价值的起点。
数数科技希望助力每一位游戏从业者把每个行为节点都转化为可量化的增长信号,让每一次用户交互都指向更可控的商业转化。
本期文章作者:数数科技解决方案专家 李梓逸
下期内容预告:沉默付费玩家深度解析
了解 TE 系统功能,获取更多行业资讯
欢迎来关注我们的公众号哦~