GIoU Loss 损失函数浅析

GIoU Loss是针对目标检测中预测边框与实际边框对比的损失计算方法,弥补了基于距离损失函数的不足。当预测框与真实框不相交时,IoU为0,导致梯度消失。GIoU引入包围两框的最小体积C,通过计算C中排除A和B的体积占比,解决了这一问题。1-GIoU作为损失函数,能更好地反映框之间的相似性,且在[0,2]区间内,重叠越大,损失越小。" 88627007,7746742,深入理解计算机网络体系与功能,"['计算机网络', '网络协议', '局域网', '广域网', '拓扑结构']
摘要由CSDN通过智能技术生成

GIoU Loss

参考文献:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

GIoU是源自IoU的一种边框预测的损失计算方法,在目标检测等领域,需要对预测边框(pre BBox)与实际标注边框(ground truth BBox)进行对比,计算损失。在Yolo算法中,给定预测值与ground truth的 x\y\w\h 进行预测,采用回归损失。但实际上,回归损失并不是该问题的最好损失函数,因为其只关注 x\y\w\w 对应的“距离”,而本质上我们想要得到 IoU 值比较大的预测框,两者联系并不大。那么为什么不直接采用IoU值作为损失函数呢? 因为一旦预测框与真实框不相交,那么IoU都为0,也就是说,在很大的范围内(不相交的区域),损失函数是没有梯度的,因此才有了GIoU Loss(Generalized Intersection over Union)

1 为什么基于距离的损失函数不行?

在这里插入图片描述
如上图所示,在基于L1和L2范数的度量下,距离相同的两个框框,实际Io

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值