GIoU Loss
参考文献:Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
GIoU是源自IoU的一种边框预测的损失计算方法,在目标检测等领域,需要对预测边框(pre BBox)与实际标注边框(ground truth BBox)进行对比,计算损失。在Yolo算法中,给定预测值与ground truth的 x\y\w\h 进行预测,采用回归损失。但实际上,回归损失并不是该问题的最好损失函数,因为其只关注 x\y\w\w 对应的“距离”,而本质上我们想要得到 IoU 值比较大的预测框,两者联系并不大。那么为什么不直接采用IoU值作为损失函数呢? 因为一旦预测框与真实框不相交,那么IoU都为0,也就是说,在很大的范围内(不相交的区域),损失函数是没有梯度的,因此才有了GIoU Loss(Generalized Intersection over Union)。
1 为什么基于距离的损失函数不行?
如上图所示,在基于L1和L2范数的度量下,距离相同的两个框框,实际Io