non-reference转录组基因的差异表达分析

总体设计

比较基于de novo和reference-genome的转录组组装来评估用于鉴定差异表达的基因(DEGs)的reference-free和-dependent两种方法。

RNAseq分析

RNA-seq raw reads用FastQC质检,Trimmomatic,PrinSeq。
cleaned reads用Trinity用于de novo转录组组装;同样的cleaned reads set 用GSNAP map到有reference genome的基因模型。
EdgeR,DESeq2,NOISeq用来normalize read counts和检测DEGs。
Blast2GO用于assign GO terms to genes。
比较:

  1. 转录组和基因组
  2. map到de novo转录组的reads和reference-based genes
  3. 在两种方法中找到的DEGs
  4. 两组方法的GO terms

RNA raw data处理

去adapter,organellar,rRNA和low-quality sequences,保证reads数在20到30百万之间用于DEGs的发现。

De novo assembly

由于转录本剪接变体和片段化序列的存在,只有将近90%的reads可以用Trinity组装,选出每个gene cluster中最长的基因来降低冗余度。BUSCO tools进行转录组的比对找出各自的single copy数和duplicated数,fragments和missing数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值