手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)

前言

在本文中,我将介绍Ollama最近对Llama 3.2 Vision的支持更新,并分享Llama 3.2 Vision的实测结果。同时,我还将介绍一个视觉RAG系统,展示如何将Llama 3.2 Vision与该系统结合,完成基于视觉RAG检索的任务。

先介绍此次更新:

Ollama 现在正式支持 Llama 3.2 视觉模型(Llama 3.2 Vision)。

你看就像这样拖进去就可以识别图片了。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_LLM

▲ 来源 | Prompt Engineering

你可以看到该模型有11B参数版和90B参数版。选择90B参数版时,文件大小约为55GB。当然还有一些量化的版本。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_02

Llama 3.2 Vision 11B 至少需要 8GB VRAM,而 90B 型号至少需要 64 GB VRAM。

为了安装它,你需要更新一下ollama,这里以docker安装的ollama为例,没更新前拉取这个视觉模型不成功,我们需要删掉容器,再pull更新它。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_03

更新完之后我们可以执行拉取操作

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_04

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_05

你可以使用ollama python库这样运行它的测试

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_ai_06

通过本地图像路径向模型提问“这张图片是什么”。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_07

▲ 来源 | Fahd Mirza

模型返回了结果,描述图片中有“日落、袋鼠和一群鸟,太阳位于画面中央,但被云遮挡。” 这正是图片内容。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_08

“ 这是什么城市?”,模型会给出答案:“我猜这是日本的城市,可能是东京或大阪。”

我们看看其他一些场景的情况:

手写内容识别

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_LLM_09

光学字符识别 (OCR)

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_10

图表和表格

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_语言模型_11

图片问答

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_ai_12

还是不错的。

下面我们进入正题 …

一个视觉RAG系统 + Llama 3.2 Vision

LocalGPT-Vision 是一个基于视觉的检索增强生成 (RAG) 系统,它可以让你与文档进行对话,使用Vision语言模型实现端到端的RAG系统。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_13

该项目使用Colqwen 或 ColPali模型进行基于视觉的页面信息检索,检索到的页面将传递到视觉语言模型 (VLM) 以生成响应。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_llama_14

安装这个项目:

首先,你需要克隆代码仓库或拉取最新的更改;然后你需要创建一个新的虚拟环境来使用conda;最后使用`pip install -r requirements.txt`安装所有需要的包。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_LLM_15

为了启动主应用程序,我们将使用`python app.py`,这会启动我们的Flask服务器,并在该URL上运行。只需在浏览器中访问即可。

这是本地GPT Vision的主界面。如果你进入模型列表,将看到检索模型。我将选择Colqwen ,它是最适合的模型之一。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_16

对于生成模型,你有多个选项,我将选择Ollama Llama Vision,

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_语言模型_17

然后保存更改。

对于被RAG的对象,我们使用一篇名叫Light RAG论文,这是一种简单快速的检索增强生成方法,结合了知识库和基于密集向量的方式,特别适用于具有某种关系的实体。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_LLM_18

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_语言模型_19

开始:

点击上传文档按钮,选择相应的PDF文件,然后点击“开始索引”。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_20

▲ 来源 | Prompt Engineering

此时,后台将使用Colqwen模型为PDF中的每一页创建多维向量表示,转换成图像并计算嵌入,所有这些操作都依赖于强大的poppler库。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_21

如果遇到问题,请确保已安装poppler库,因为有些人在使用这个库时遇到过问题。索引完成后,点击“确定”,然后开始与刚才创建的知识库进行交互。

首先,我们用一个简单的提示开始:“这篇论文的标题是什么?”

你可以看到,论文的标题是《Light RAG: Simple and Fast Retrieval Augmented Generation》。

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_ai_22

它与标题完全一致。

接下来我们可以看看它是否能够解释该图像的详细信息。

我问:“你能详细解释图1吗?”

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_LLM_23

图1 作为论文中的一个插图,讨论了索引过程和检索过程,并展示了提议的Light RAG框架的整体架构。该页面还包含了其他信息,特别是数学公式,它们本质上也解释了相同的概念。

原文是这样的

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_24

这里是这个视觉RAG系统回答的翻译版本:

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_人工智能_25

生成的响应是:“该图像展示了Light RAG框架的全面概述,该框架旨在增强信息检索系统的性能和效率。”然后它讨论了不同的组件,包括数据索引器和数据检索器。

这些信息似乎来自图像本身或图像所在页面上的文本。描述可以做得更好一些,可能90B版本的模型会做得更好。

我在这里补充它回答后续的截图:

Ollama 更新!手把手教你用Ollama轻松搭建Llama 3.2 Vision + 视觉RAG系统(本地安装)_语言模型_26

此外,这些视觉开源大模型往往也可以用于一些视频帧的分析的场景。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值