【PSO-BP】基于粒子群算法优化BP神经网络的风电功率预测研究(Matlab代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、背景与意义

二、粒子群算法(PSO)简介

三、BP神经网络简介

四、粒子群算法优化BP神经网络的风电功率预测

五、优势与挑战

六、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于粒子群算法优化BP神经网络的风电功率预测研究是一个结合了多种技术的复杂课题,旨在提高风电功率预测的准确性和效率。以下是对这一研究的详细分析:

一、背景与意义

风电作为一种重要的清洁能源,其功率预测对于能源管理与优化具有重要意义。然而,由于风能的间歇性和不稳定性,传统的预测方法往往难以满足高精度和实时性的需求。因此,研究基于粒子群算法优化BP神经网络的风电功率预测方法,对于提升预测精度、促进风能产业的健康发展具有重要意义。

二、粒子群算法(PSO)简介

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来源于鸟群觅食的行为。它通过模拟鸟群中个体之间的社会行为和信息交流来寻找最优解。PSO算法具有简单易实现、参数调节少等优点,已被广泛应用于函数优化、神经网络训练等领域。

在PSO算法中,每个粒子代表一个潜在解,并在搜索空间中单独搜寻最优解。粒子通过跟踪两个“极值”(个体最优解pBest和全局最优解gBest)来更新自己的速度和位置,从而逐步逼近最优解。

三、BP神经网络简介

BP(Back Propagation)神经网络是一种多层前馈神经网络,通过前向传播计算输出,并通过反向传播算法调整权重和阈值,以最小化输出误差。BP神经网络具有强大的非线性映射能力和自学习能力,适用于解决复杂的预测问题。

在风电功率预测中,BP神经网络可以通过学习风电功率与风速、风向等气象因素之间的复杂非线性关系,来逼近风电功率的真实输出。然而,BP神经网络的性能很大程度上依赖于网络结构的设置和参数的调整,因此需要采用优化算法来提高其预测精度。

四、粒子群算法优化BP神经网络的风电功率预测

基于粒子群算法优化BP神经网络的风电功率预测方法,主要利用PSO算法的全局搜索能力来优化BP神经网络的权重和阈值。具体步骤如下:

  1. 数据收集与预处理:收集风电场的气象数据(如风速、风向、温度、湿度等)和历史功率数据,并进行数据清洗、缺失值处理、异常值检测与修正等预处理工作。

  2. 构建BP神经网络模型:根据风电功率预测问题的特点,选择合适的网络结构(如输入层、隐层、输出层的节点数)、激活函数(如Sigmoid、ReLU等)和优化算法(如梯度下降法)等参数。

  3. 初始化粒子群:设定粒子群的大小(即粒子的数量),并为每个粒子初始化位置和速度。在BP神经网络的优化中,粒子的位置可能代表网络的权重和偏置值。

  4. 适应度评估:使用BP神经网络的误差作为粒子的适应度函数。对每个粒子,通过其代表的权重和偏置值配置BP神经网络,并使用训练集进行训练。记录每个粒子的误差,并更新其个体最优位置pBest。

  5. 更新全局最优位置:在所有粒子中找出误差最小的粒子,并更新全局最优位置gBest。

  6. 更新粒子速度和位置:根据PSO的公式更新每个粒子的速度和位置,使其向个体最优位置pBest和全局最优位置gBest靠近。同时,确保更新后的粒子位置(即网络的权重和偏置值)在合理的范围内。

  7. 迭代优化:重复步骤4至6,直到满足终止条件(如达到最大迭代次数或满足某个误差阈值)。

  8. 测试与评估:使用优化后的BP神经网络模型对新的风电功率数据进行预测,并计算预测结果的误差(如MSE、MAE等)来评估模型的性能。

五、优势与挑战

优势

  • 提高预测精度:通过PSO算法优化BP神经网络的权重和阈值,可以显著提高风电功率预测的精度。
  • 减少人工干预:PSO算法具有自动搜索最优解的能力,可以减少对BP神经网络参数调整的人工干预。

挑战

  • 高计算成本:PSO算法和BP神经网络的结合需要较高的计算成本,特别是在处理大规模数据集时。
  • 参数敏感性:PSO算法和BP神经网络的性能都受到参数设置的影响,需要仔细调整以获得最佳性能。

六、未来展望

随着深度学习技术的不断发展和风电场数据的不断积累,基于粒子群算法优化BP神经网络的风电功率预测研究将呈现出以下趋势:

  • 模型优化:通过改进PSO算法和BP神经网络的结构、激活函数、优化算法等参数,进一步提高预测精度和效率。
  • 多源数据融合:结合气象数据、地形数据等多源信息,提高模型的泛化能力和鲁棒性。
  • 实时预测与决策支持:将预测

📚2 运行结果

包括以下几种优化算法:

部分代码:

%% 调用算法 
disp('正在优化,请等待……')
H1 = cell2mat(str(number));
eval(['[fMin , bestX, Convergence_curve ] =',H1,'(SearchAgents_no,Max_iter,lb,ub,dim,fobj);'])

%% 绘制进化曲线
figure
plot(Convergence_curve,'k-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')

setdemorandstream(temp);%此行代码用于生成随机数种子,确保结果可以复现
[~,optimize_test_simu]=fitness(bestX,inputnum,hiddennum_best,outputnum,net,inputn,outputn,inputn_test,outputps,output_test);

%% 比较算法预测值 
str={'真实值','标准BP','优化后BP'};
figure('Units', 'pixels', ...
    'Position', [300 300 860 370]);
plot(output_test,'-','Color',[0 1 0]) 
hold on
plot(test_simu0,'-.','Color',[1 1 0]) 
hold on
plot(optimize_test_simu,'-','Color',[0 0 1])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off


%% 比较算法误差
test_y = output_test;
Test_all = [];

y_test_predict = test_simu0;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];


y_test_predict = optimize_test_simu;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
     

str={'真实值','标准BP','优化后BP'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)

%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color=    [0    1    0
    0.1339    0.7882    0.8588
    0.1525    0.6645    0.1290
    0.8549    0.9373    0.8275   
    0.1551    0.2176    0.8627
    0.7843    0.1412    0.1373
    0.2000    0.9213    0.8176
      0.5569    0.8118    0.7882
       1.0000    0.5333    0.5176];
figure('Units', 'pixels', ...
    'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on

for i = 1 : size(plot_data_t,2)
    x_data(:, i) = b(i).XEndPoints'; 
end

for i =1:size(plot_data_t,2)
    b(i).FaceColor = color(i,:);
    b(i).EdgeColor=[0.3353    0.3314    0.6431];
    b(i).LineWidth=1.2;
end

for i = 1 : size(plot_data_t,1)-1
    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
    b1=xline(xilnk,'--','LineWidth',1.2);
    hold on
end 

ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off

%% 二维图
figure
plot_data_t1=Test_all(:,[1,5])';
MarkerType={'*','>','pentagram','^','v'};
for i = 1 : size(plot_data_t1,2)
   scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled")
   hold on
end
set(gca,"FontSize",12,"LineWidth",2)
box off
legend box off
legend(str1,'Location','best')
xlabel('MAE')
ylabel('R2')
grid on


%% 雷达图
figure('Units', 'pixels', ...
    'Position', [150 150 520 500]);
Test_all1=Test_all./sum(Test_all);  %把各个指标归一化到一个量纲
Test_all1(:,end)=1-Test_all(:,end);
RC=radarChart(Test_all1);
str3={'MAE','MAPE','MSE','RMSE','R2'};
RC.PropName=str3;
RC.ClassName=str1;
RC=RC.draw(); 
RC.legend();
RC.setBkg('FaceColor',[1,1,1])
RC.setRLabel('Color','none')
colorList=[181 86 29;
          78 101 155;
          184 168 207;
          231 188 198;
          182 118 108;
          239 164 132;
          253 207 158]./255;

for n=1:RC.ClassNum
    RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))
end

%%
figure('Units', 'pixels', ...
    'Position', [150 150 920 600]);
t = tiledlayout('flow','TileSpacing','compact');
for i=1:length(Test_all(:,1))
nexttile
th1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));
r1 = Test_all(:,i)';
[u1,v1] = pol2cart(th1,r1);
M=compass(u1,v1);
for j=1:length(Test_all(:,1))
    M(j).LineWidth = 2;
    M(j).Color = colorList(j,:);

end   
title(str2{i})
set(gca,"FontSize",10,"LineWidth",1)
end
 legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]尹相国,张文,胡柏华,等.基于BP神经网络算法的新一代智能变电站控制障碍分析与定位技术研究[J].自动化与仪器仪表, 2023(8):144-149.、

[2]李伟,何鹏举,杨恒,等.基于粗糙集和改进遗传算法优化BP神经网络的算法研究[J].西北工业大学学报, 2012, 30(4):6.DOI:10.3969/j.issn.1000-2758.2012.04.022.

[3]王晓荣,伦淑娴.基于改进粒子群算法的BP神经网络优化研究[J].渤海大学学报(自然科学版), 2008.DOI:JournalArticle/5aec645bc095d710d4ff1b17.

[3]邹琼,吴曦,张杨,et al.基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究[J].中国全科医学, 2024, 27(08):961-970.DOI:10.12114/j.issn.1007-9572.2023.0360.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值