💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于粒子群算法优化BP神经网络的风电功率预测研究是一个结合了多种技术的复杂课题,旨在提高风电功率预测的准确性和效率。以下是对这一研究的详细分析:
一、背景与意义
风电作为一种重要的清洁能源,其功率预测对于能源管理与优化具有重要意义。然而,由于风能的间歇性和不稳定性,传统的预测方法往往难以满足高精度和实时性的需求。因此,研究基于粒子群算法优化BP神经网络的风电功率预测方法,对于提升预测精度、促进风能产业的健康发展具有重要意义。
二、粒子群算法(PSO)简介
粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来源于鸟群觅食的行为。它通过模拟鸟群中个体之间的社会行为和信息交流来寻找最优解。PSO算法具有简单易实现、参数调节少等优点,已被广泛应用于函数优化、神经网络训练等领域。
在PSO算法中,每个粒子代表一个潜在解,并在搜索空间中单独搜寻最优解。粒子通过跟踪两个“极值”(个体最优解pBest和全局最优解gBest)来更新自己的速度和位置,从而逐步逼近最优解。
三、BP神经网络简介
BP(Back Propagation)神经网络是一种多层前馈神经网络,通过前向传播计算输出,并通过反向传播算法调整权重和阈值,以最小化输出误差。BP神经网络具有强大的非线性映射能力和自学习能力,适用于解决复杂的预测问题。
在风电功率预测中,BP神经网络可以通过学习风电功率与风速、风向等气象因素之间的复杂非线性关系,来逼近风电功率的真实输出。然而,BP神经网络的性能很大程度上依赖于网络结构的设置和参数的调整,因此需要采用优化算法来提高其预测精度。
四、粒子群算法优化BP神经网络的风电功率预测
基于粒子群算法优化BP神经网络的风电功率预测方法,主要利用PSO算法的全局搜索能力来优化BP神经网络的权重和阈值。具体步骤如下:
-
数据收集与预处理:收集风电场的气象数据(如风速、风向、温度、湿度等)和历史功率数据,并进行数据清洗、缺失值处理、异常值检测与修正等预处理工作。
-
构建BP神经网络模型:根据风电功率预测问题的特点,选择合适的网络结构(如输入层、隐层、输出层的节点数)、激活函数(如Sigmoid、ReLU等)和优化算法(如梯度下降法)等参数。
-
初始化粒子群:设定粒子群的大小(即粒子的数量),并为每个粒子初始化位置和速度。在BP神经网络的优化中,粒子的位置可能代表网络的权重和偏置值。
-
适应度评估:使用BP神经网络的误差作为粒子的适应度函数。对每个粒子,通过其代表的权重和偏置值配置BP神经网络,并使用训练集进行训练。记录每个粒子的误差,并更新其个体最优位置pBest。
-
更新全局最优位置:在所有粒子中找出误差最小的粒子,并更新全局最优位置gBest。
-
更新粒子速度和位置:根据PSO的公式更新每个粒子的速度和位置,使其向个体最优位置pBest和全局最优位置gBest靠近。同时,确保更新后的粒子位置(即网络的权重和偏置值)在合理的范围内。
-
迭代优化:重复步骤4至6,直到满足终止条件(如达到最大迭代次数或满足某个误差阈值)。
-
测试与评估:使用优化后的BP神经网络模型对新的风电功率数据进行预测,并计算预测结果的误差(如MSE、MAE等)来评估模型的性能。
五、优势与挑战
优势:
- 提高预测精度:通过PSO算法优化BP神经网络的权重和阈值,可以显著提高风电功率预测的精度。
- 减少人工干预:PSO算法具有自动搜索最优解的能力,可以减少对BP神经网络参数调整的人工干预。
挑战:
- 高计算成本:PSO算法和BP神经网络的结合需要较高的计算成本,特别是在处理大规模数据集时。
- 参数敏感性:PSO算法和BP神经网络的性能都受到参数设置的影响,需要仔细调整以获得最佳性能。
六、未来展望
随着深度学习技术的不断发展和风电场数据的不断积累,基于粒子群算法优化BP神经网络的风电功率预测研究将呈现出以下趋势:
- 模型优化:通过改进PSO算法和BP神经网络的结构、激活函数、优化算法等参数,进一步提高预测精度和效率。
- 多源数据融合:结合气象数据、地形数据等多源信息,提高模型的泛化能力和鲁棒性。
- 实时预测与决策支持:将预测
📚2 运行结果
包括以下几种优化算法:
部分代码:
%% 调用算法
disp('正在优化,请等待……')
H1 = cell2mat(str(number));
eval(['[fMin , bestX, Convergence_curve ] =',H1,'(SearchAgents_no,Max_iter,lb,ub,dim,fobj);'])
%% 绘制进化曲线
figure
plot(Convergence_curve,'k-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
setdemorandstream(temp);%此行代码用于生成随机数种子,确保结果可以复现
[~,optimize_test_simu]=fitness(bestX,inputnum,hiddennum_best,outputnum,net,inputn,outputn,inputn_test,outputps,output_test);
%% 比较算法预测值
str={'真实值','标准BP','优化后BP'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(output_test,'-','Color',[0 1 0])
hold on
plot(test_simu0,'-.','Color',[1 1 0])
hold on
plot(optimize_test_simu,'-','Color',[0 0 1])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = output_test;
Test_all = [];
y_test_predict = test_simu0;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_test_simu;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','标准BP','优化后BP'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0 1 0
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
%% 二维图
figure
plot_data_t1=Test_all(:,[1,5])';
MarkerType={'*','>','pentagram','^','v'};
for i = 1 : size(plot_data_t1,2)
scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled")
hold on
end
set(gca,"FontSize",12,"LineWidth",2)
box off
legend box off
legend(str1,'Location','best')
xlabel('MAE')
ylabel('R2')
grid on
%% 雷达图
figure('Units', 'pixels', ...
'Position', [150 150 520 500]);
Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲
Test_all1(:,end)=1-Test_all(:,end);
RC=radarChart(Test_all1);
str3={'MAE','MAPE','MSE','RMSE','R2'};
RC.PropName=str3;
RC.ClassName=str1;
RC=RC.draw();
RC.legend();
RC.setBkg('FaceColor',[1,1,1])
RC.setRLabel('Color','none')
colorList=[181 86 29;
78 101 155;
184 168 207;
231 188 198;
182 118 108;
239 164 132;
253 207 158]./255;
for n=1:RC.ClassNum
RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))
end
%%
figure('Units', 'pixels', ...
'Position', [150 150 920 600]);
t = tiledlayout('flow','TileSpacing','compact');
for i=1:length(Test_all(:,1))
nexttile
th1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));
r1 = Test_all(:,i)';
[u1,v1] = pol2cart(th1,r1);
M=compass(u1,v1);
for j=1:length(Test_all(:,1))
M(j).LineWidth = 2;
M(j).Color = colorList(j,:);
end
title(str2{i})
set(gca,"FontSize",10,"LineWidth",1)
end
legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]尹相国,张文,胡柏华,等.基于BP神经网络算法的新一代智能变电站控制障碍分析与定位技术研究[J].自动化与仪器仪表, 2023(8):144-149.、
[2]李伟,何鹏举,杨恒,等.基于粗糙集和改进遗传算法优化BP神经网络的算法研究[J].西北工业大学学报, 2012, 30(4):6.DOI:10.3969/j.issn.1000-2758.2012.04.022.
[3]王晓荣,伦淑娴.基于改进粒子群算法的BP神经网络优化研究[J].渤海大学学报(自然科学版), 2008.DOI:JournalArticle/5aec645bc095d710d4ff1b17.
[3]邹琼,吴曦,张杨,et al.基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究[J].中国全科医学, 2024, 27(08):961-970.DOI:10.12114/j.issn.1007-9572.2023.0360.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取