💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
关于BER(误码率)在不同信道模型和调制方案下的表现,以及应用不同组合技术(SC、EGC、MRC)的Rx(接收)多样性研究,以下是详细的文档概述:
一、调制方案
-
BPSK(Binary Phase Shift Keying)
- 描述:最基本的相位调制方式,仅使用两个相位来表示比特数据,每个符号传输1个比特数据。
- 优点:抗噪性强,适用于低信噪比的环境。
- 缺点:数据速率较低。
-
QPSK(Quadrature Phase Shift Keying)
- 描述:相位调制的扩展形式,每个符号传输2个比特数据,通过4个不同的相位来表示数据。
- 优点:数据速率提高一倍。
- 缺点:抗噪性较BPSK稍弱,但仍适用于中等信噪比的环境。
-
16-QAM(16-Quadrature Amplitude Modulation)
- 描述:通过幅度和相位共同调制信号的方式,每个符号能够表示4个比特数据。
- 优点:数据速率显著提高。
- 缺点:抗噪性能进一步降低,适合信噪比较高的传输环境。
-
64-QAM(64-Quadrature Amplitude Modulation)
- 描述:16-QAM的扩展版本,每个符号能够传输6个比特数据。
- 优点:适用于需要高数据速率的场合,如高清视频流传输。
- 缺点:对信号质量要求高,适用于信噪比非常高的环境,否则误码率会显著上升。
二、信道模型
在进行BER研究时,需要考虑多种信道模型,包括但不限于:
- 加性高斯白噪声信道(AWGN):最简单的信道模型,仅考虑高斯白噪声对信号的影响。
- 频率选择性信道:考虑信道的多径效应和频率选择性衰落。
- 其他复杂信道模型:如瑞利信道、莱斯信道等,用于模拟更复杂的通信环境。
三、Rx多样性技术
- SC(Selection Combining):从多个接收信号中选择信号质量最好的一个进行解码。
- EGC(Equal Gain Combining):将多个接收信号等增益合并后解码。
- MRC(Maximal Ratio Combining):根据每个接收信号的信噪比进行加权合并,以最大化合并后的信号质量。
四、研究方法
- 确定仿真参数:如载波频率、符号速率、调制阶数等。
- 生成调制信号:使用MATLAB或其他仿真工具生成不同调制方案的调制信号。
- 添加信道模型:为每种调制方案添加适当的信道模型。
- 误码率仿真:对每种调制方案进行误码率仿真,记录不同信噪比下的误码率。
- 绘制误码率曲线:将仿真结果绘制成曲线图,以便直观地比较不同调制方案和信道模型下的性能表现。
- 应用Rx多样性技术:分别应用SC、EGC、MRC等Rx多样性技术,比较其在不同信道模型和调制方案下的性能提升。
五、研究结果与分析
通过仿真研究,可以得到以下结论:
- 调制方案对BER的影响:随着调制阶数的增加(从BPSK到64-QAM),数据速率提高,但抗噪性能逐渐降低。因此,在高信噪比环境下,高阶调制方案(如64-QAM)能够提供更好的性能;而在低信噪比环境下,低阶调制方案(如BPSK)更为可靠。
- 信道模型对BER的影响:加性高斯白噪声信道下,BER性能主要受噪声功率影响;而在频率选择性信道下,多径效应和频率选择性衰落会导致BER性能下降。
- Rx多样性技术对BER的影响:SC、EGC、MRC等Rx多样性技术均能有效提高接收信号的抗噪性能,从而降低BER。其中,MRC技术通过最优加权合并多个接收信号,能够最大程度地提高合并后的信号质量,因此性能最优。
综上所述,BER性能受调制方案、信道模型和Rx多样性技术等多种因素影响。在实际应用中,需要根据具体场景选择合适的调制方案、信道模型和Rx多样性技术,以优化系统性能。
📚2 运行结果
部分代码:
function [reshaped_symbol_frames] = modulation_function(reshaped_data_frames,modulation_number)
switch (modulation_number)
case 1
reshaped_symbol_frames=2*reshaped_data_frames-1;
case 2
reshaped_symbol_frames=2*reshaped_data_frames(1,:)-...
1+1i*(2*reshaped_data_frames(2,:)-1);
case 3
QAM_16_modulation = modem.qammod('M',16);
reshaped_symbol_frames =modulate(QAM_16_modulation,reshaped_data_frames);
case 4
QAM_64_modulation= modem.qammod('M',64);
reshaped_symbol_frames =modulate(QAM_64_modulation,reshaped_data_frames);
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]卢海风.基于OFDM系统的QAM软判决算法的研究与仿真[D].武汉理工大学[2024-12-08].
[2]Sudhir Kumar Jha.Performance Analysis of MIMO Systems Using OSTBCs[J].International Journal of Engineering Trends & Technology, 2013, 4(7).
[3]李鑫.数字信号调制与信道编码方式识别技术研究[D].四川大学,2021.
[4]潘学文.QPSK和QAM调制下OFDM通信系统MATLAB仿真实现[J].今日自动化, 2021, 000(006):P.162-163.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取