💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、引言
船舶调度在航运业中至关重要,合理的船舶调度能够提高港口的运营效率、降低船舶的等待时间和运营成本,进而提升整个航运系统的经济效益。随着航运业的不断发展,船舶调度问题日益复杂,传统的调度方法在应对大规模、多约束的复杂调度问题时逐渐显露出局限性。模拟退火算法作为一种有效的优化算法,具有在大规模搜索空间中寻找全局最优解的能力,为船舶优化调度问题提供了新的解决思路。本文旨在深入研究基于模拟退火优化算法的船舶优化调度问题,通过建立合理的模型并运用模拟退火算法进行求解,期望获得更优的船舶调度方案。
二、船舶优化调度问题分析
(一)问题描述
船舶优化调度问题涉及多个方面的决策,包括船舶进港时间的安排、泊位的分配、装卸任务的调度等。目标是在满足各种约束条件的前提下,实现港口吞吐量最大化、船舶等待时间最小化以及运营成本最小化等多个目标。例如,要考虑不同船舶的类型、载货量、装卸需求,还要考虑港口的泊位数量、水深、长度等条件,以及潮汐、天气等自然因素的影响。
(二)约束条件
-
泊位约束:每个泊位在同一时间只能停靠一艘船舶,且船舶的尺寸需要与泊位的长度、水深等条件相匹配。例如,大型船舶需要停靠在水深足够、长度合适的泊位 。
-
时间约束:船舶的进港时间不能早于其预计到达时间,且要考虑装卸作业所需的时间,确保船舶按时离港。同时,相邻船舶的进港时间需要有合理的间隔,以避免港口拥堵。
-
资源约束:港口的装卸设备、人力等资源有限,需要合理分配这些资源,确保船舶的装卸作业能够顺利进行。
船舶在海上航行过程中,面临复杂多变的海上环境,通信的重要性逐渐显露出来1。现代船舶航行已经无需人工驾驶,只需要专业人员控制数控设备,就能实现船舶的控制航行,航行规划、故障识别、动力控制都可以通过船舶自身的控制系统,经通信传输渠道实现控制,保证船舶的平稳航行R2-4。只有合理调度船舶网络,实现整体控制系统的操控,才能确保船舶稳定、正常在海面上安全航行。调度被广泛应用于交通通信的领域之中,调度会结合计算机科学、人工智能技术、生产管理科学等多个领域的技术,实现综合统筹应用[5。在船舶控制系统中,通过网络实现整个船舶数据信息的共享与管理,确保船舶的高效运行。
目前已经有众多研究者在船舶网络优化调度方面作出研究,鲍劲松等6提出以遗传算法作为基础,优化调度网络,但是由于容易过早陷人最优解,导致优化调度效果不尽如人意。徐诗鸿等提出基于模拟退火算法的船舶网络优化调度。
三、模拟退火算法原理
(一)基本思想
模拟退火算法起源于对物理退火过程的模拟。在物理退火中,当固体被加热到高温时,原子处于无序的高能状态,随着温度逐渐降低,原子会逐渐调整位置,最终达到能量最低的有序状态。模拟退火算法借鉴了这一过程,在优化问题中,将问题的解空间看作是物理系统的状态空间,目标函数值对应于系统的能量。算法从一个初始解出发,在开始时设置一个较高的温度,此时算法可以接受较劣的解,以跳出局部最优解的陷阱。随着温度不断降低,算法逐渐只接受更优的解,最终趋近于全局最优解 。
(二)算法流程
四、基于模拟退火算法的船舶优化调度模型建立
(一)模型假设
为简化问题,做出以下假设:
-
船舶的到达时间、装卸时间等参数已知且确定。
-
不考虑突发的天气变化、设备故障等意外情况对船舶调度的影响。
(二)模型构建
-
约束条件:
-
泊位占用约束:∑j=1nxgij≤1∑j=1nxgij≤1,对于每个港口 gg 的泊位 ii,同一时间最多停靠一艘船舶。
-
船舶尺寸与泊位匹配约束:船舶 jj 的吃水深度 djdj 需满足 dj≤Dgidj≤Dgi(港口 gg 泊位 ii 的水深),船舶 jj 的长度 ljlj 需满足 lj≤Lgilj≤Lgi(港口 gg 泊位 ii 的长度),当 xgij=1xgij=1 时成立。
-
时间先后约束:船舶 jj 的进港时间 tjtj 需满足 tj≥ajtj≥aj(船舶 jj 的预计到达时间),且若船舶 jj 和船舶 kk 停靠在同一泊位 ii,则 tj+sj+uj≤tktj+sj+uj≤tk 或 tk+sk+uk≤tjtk+sk+uk≤tj,其中 sjsj 为船舶 jj 的装卸时间,ujuj 为船舶 jj 离港所需时间。
-
五、模拟退火算法求解过程
(一)解的表示
采用编码的方式表示船舶调度方案,例如可以使用二维数组,第一维表示港口,第二维表示泊位,数组元素的值表示停靠在该泊位的船舶编号。若某泊位为空,则对应元素为 0。
(二)邻域搜索策略
通过对编码进行局部扰动来生成邻域解,如交换两艘船舶的泊位分配,或者调整某艘船舶的进港时间等操作,从而产生新的调度方案。
(三)参数设置
根据实验和经验,合理设置模拟退火算法的参数,如初始温度 T0T0 可以设置为一个较大的值,以保证算法能够在较大的解空间内进行搜索;降温速率 αα 一般设置在 0.950.95 - 0.990.99 之间;终止温度 TendTend 则根据实际情况确定,当温度降低到一定程度,目标函数值的变化很小时,可认为算法收敛 。
六、实验结果与分析
(一)实验数据
选取某港口一段时间内的船舶调度数据作为实验样本,包括船舶的类型、载货量、预计到达时间、装卸任务等信息,同时考虑港口的泊位数量、尺寸等参数。
(二)实验过程
使用 Matlab 等编程工具实现模拟退火算法,并将其应用于船舶调度问题的求解。在实验过程中,记录不同参数设置下算法的运行结果,包括最优调度方案、目标函数值(船舶总等待时间)以及算法的收敛速度等。
(三)结果分析
-
与传统方法对比:将模拟退火算法得到的结果与传统的调度方法(如贪心算法)进行对比,发现模拟退火算法能够在多数情况下获得更优的调度方案,有效降低船舶的总等待时间,提高港口的运营效率。
-
参数影响分析:分析不同参数(如初始温度、降温速率)对算法性能的影响。结果表明,初始温度过高会导致算法收敛速度过慢,而初始温度过低则可能使算法过早陷入局部最优解;降温速率过大可能会错过全局最优解,降温速率过小则会增加算法的迭代次数和运行时间。
七、结论与展望
(一)研究结论
本文通过深入研究基于模拟退火优化算法的船舶优化调度问题,建立了相应的数学模型,并运用模拟退火算法进行求解。实验结果表明,模拟退火算法在解决船舶优化调度问题上具有一定的优势,能够有效地降低船舶的等待时间,提高港口的运营效率。同时,合理的参数设置对于算法的性能至关重要。
(二)研究不足与展望
-
研究不足:本文的模型在一定程度上进行了简化,没有充分考虑实际情况中的不确定性因素,如天气变化、船舶故障等对调度的影响。此外,在算法的优化方面还有进一步提升的空间,例如可以结合其他智能算法进行改进。
-
展望:未来的研究可以考虑将更多的实际因素纳入模型,如引入随机变量来描述不确定性因素,建立更加贴近实际的船舶调度模型。同时,可以探索将模拟退火算法与其他优化算法(如遗传算法、粒子群算法等)相结合,形成更高效的混合算法,以进一步提高算法的性能和求解质量。此外,随着大数据、人工智能等技术的发展,可以利用这些技术对船舶调度数据进行更深入的分析和挖掘,为船舶调度决策提供更准确的支持。
船舶在海上航行过程中,面临复杂多变的海上环境,通信的重要性逐渐显露出来1。现代船舶航行已经无需人工驾驶,只需要专业人员控制数控设备,就能实现船舶的控制航行,航行规划、故障识别、动力控制都可以通过船舶自身的控制系统,经通信传输渠道实现控制,保证船舶的平稳航行R2-4。只有合理调度船舶网络,实现整体控制系统的操控,才能确保船舶稳定、正常在海面上安全航行。调度被广泛应用于交通通信的领域之中,调度会结合计算机科学、人工智能技术、生产管理科学等多个领域的技术,实现综合统筹应用[5。在船舶控制系统中,通过网络实现整个船舶数据信息的共享与管理,确保船舶的高效运行。
目前已经有众多研究者在船舶网络优化调度方面作出研究,鲍劲松等6提出以遗传算法作为基础,优化调度网络,但是由于容易过早陷人最优解,导致优化调度效果不尽如人意。徐诗鸿等提出基于模拟退火算法的船舶网络优化调度。
📚2 运行结果
总距离:5049500
第1条船,停靠港口:1,泊位:3
第2条船,停靠港口:1,泊位:1
第3条船,停靠港口:1,泊位:2
第4条船,停靠港口:2,泊位:2
第5条船,停靠港口:1,泊位:3
第6条船,停靠港口:1,泊位:1
第7条船,停靠港口:1,泊位:1
第8条船,停靠港口:1,泊位:2
第9条船,停靠港口:1,泊位:3
第10条船,停靠港口:2,泊位:3
wait_time =
0 0 0 0 33.5000 21.0000 57.5000 45.0000 67.0000 0
departure_time =
43.5000 32.0000 58.0000 39.2500 81.0000 69.5000 119.5000 108.0000 131.0000 45.2500
service_time =
119.5000 108.0000 131.0000 0 39.2500 45.2500
等待费用 航行费用 转移费用
1792000 210000 567000
总距离:5049500
第1条船,停靠港口:1,泊位:3
第2条船,停靠港口:1,泊位:1
第3条船,停靠港口:1,泊位:2
第4条船,停靠港口:2,泊位:2
第5条船,停靠港口:1,泊位:3
第6条船,停靠港口:1,泊位:1
第7条船,停靠港口:1,泊位:1
第8条船,停靠港口:1,泊位:2
第9条船,停靠港口:1,泊位:3
第10条船,停靠港口:2,泊位:3
wait_time =
0 0 0 0 33.5000 21.0000 57.5000 45.0000 67.0000 0
departure_time =
43.5000 32.0000 58.0000 39.2500 81.0000 69.5000 119.5000 108.0000 131.0000 45.2500
service_time =
119.5000 108.0000 131.0000 0 39.2500 45.2500
等待费用 航行费用 转移费用
1792000 210000 567000
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]朱云龙,罗焕佐,薛劲松,顾兆禄.港口业船舶优化调度模型设计[J].高技术通讯,2000,10(7):79-81
[2]王芳杰.改进遗传算法的船舶网络优化调度研究[J].舰船科学技术,2022,44(9):170-173
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取