💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
不确定性下基于二次规划的多智能体安全关键系统连续控制研究解析
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要:
本文研究了基于二次规划(QP)的安全关键多智能体系统的控制问题。每个受控智能体被建模为积分器和不确定非线性执行系统的级联连接。具体而言,积分器表示位置-速度关系,而执行系统描述实际速度对速度参考信号的动态响应。本文采用输入-输出稳定性概念来表征执行系统的本质速度跟踪能力。由于执行器动态的不确定性,标准的二次规划避碰算法可能不可行。即使可行,由于激活约束的满秩条件可能被违反,解可能不具备利普希茨连续性。此外,受控积分器与不确定执行器动态之间的相互作用可能导致显著的鲁棒性问题。基于非线性控制理论和数值优化方法的最新发展,本文首先提出了一种新的可行集重塑技术以及一种改进的二次规划算法,以实现可行性、鲁棒性和局部利普希茨连续性。随后,我们通过非线性小增益分析来处理固有的相互作用,以保证闭环多智能体系统的安全性。所提出的方法通过数值仿真和物理实验进行了验证。
不确定性下基于二次规划的多智能体安全关键系统连续控制研究解析
1. 研究背景与核心挑战
多智能体系统在自动驾驶、无人机编队等安全关键场景中广泛应用,但执行器动态的不确定性(如非线性响应、扰动)导致传统二次规划(QP)避碰算法面临以下挑战:
- 可行性问题:不确定性可能使标准QP约束集无解,尤其在非凸环境下(如动态障碍物避碰)。
- 解的连续性:激活约束的满秩条件被破坏时,QP解可能不满足Lipschitz连续性,导致控制指令突变。
- 鲁棒性不足:积分器与执行器动态的级联耦合可能放大扰动,引发系统失稳。
2. 系统建模与稳定性分析
级联模型构建:
- 积分器层:描述位置-速度关系,形式为p˙=vp˙=v,其中pp为位置,vv为速度参考信号。
- 执行器动态:非线性不确定系统,描述实际速度对参考信号的跟踪能力,需通过输入-输出稳定性(如ISS-Lyapunov函数)表征其本质跟踪性能。
输入-输出稳定性应用:
- 执行器动态的L2跟踪性能通过输出参考失配误差(ORME)量化,确保在饱和约束下仍能维持稳定跟踪。
- 非线性小增益理论用于分析级联系统的整体稳定性,通过构造ISS-Lyapunov函数证明闭环系统的安全边界。
3. 标准QP算法的局限性
- 可行性问题:在非凸环境(如复杂障碍物布局)中,传统SCP方法因凸近似导致不可行中间问题,需通过增量约束收紧(如iSCP算法)逐步求解。
- 解连续性机制:满秩条件确保QP解的唯一性和连续性。当约束激活时,若雅可比矩阵列秩不足,解空间出现分支,导致控制指令不连续。例如,避碰约束的密集激活可能使约束矩阵秩降低,破坏Lipschitz连续性。
4. 可行集重塑与改进QP算法
可行集重塑技术:
- 约束松弛:引入安全缓冲区(如椭圆碰撞锥)应对障碍物运动不确定性,扩大可行域。
- 模型预测控制(MPC) :将不确定性建模为有界扰动,通过滚动时域优化动态调整约束边界,提升鲁棒性。
改进QP算法创新点:
- 松弛变量扩展:将标量松弛变量扩展为向量,独立调整各约束的松弛程度,平衡控制目标与可行性。
- 参数自适应调整:基于实时状态估计动态调整QP权重矩阵,例如在代价函数中引入扰动敏感项,抑制不确定性传播。
- 分布式求解:将多智能体优化解耦为单智能体问题(如dec-iSCP),降低计算复杂度并提升实时性。
5. 非线性小增益理论的应用
- 交互稳定性分析:通过构造非线性小增益条件,保证各智能体间的耦合扰动满足γ1∘γ2<Idγ1∘γ2<Id(γiγi为增益函数),避免级联失效。
- 自适应Nussbaum增益:针对未知控制方向问题,设计分布式自适应协议,通过增益调节实现跟踪误差收敛。
6. 仿真与实验验证指标
- 安全性指标:碰撞概率、安全距离违规率、避碰成功率。
- 鲁棒性指标:最大扰动抑制能力(如可容忍的执行器误差上限)、恢复时间(扰动后回归安全状态的时间)。
- 实时性指标:QP求解时间(需<10ms)、控制周期一致性(如1kHz更新频率)。
- 稳定性指标:李雅普诺夫函数收敛速率、跟踪误差的ISS增益界。
7. 未来研究方向
- 精细化不确定性建模:结合数据驱动方法(如高斯过程)量化执行器动态的不确定性边界。
- 分布式学习与优化:融合强化学习与QP框架,实现在线策略调整与约束自适应。
- 硬件在环验证:通过物理实验平台(如四旋翼集群)测试算法在通信延迟、传感器噪声等实际扰动下的性能。
总结
本文通过级联建模、可行集重塑和非线性小增益分析,系统解决了不确定环境下多智能体系统的安全控制问题。改进的QP算法在保证可行性和解连续性的同时,通过分布式架构和自适应机制显著提升了鲁棒性。未来结合学习与优化技术,有望进一步突破复杂动态场景的实时控制瓶颈。
📚2 运行结果
部分代码:
% Ax <= b, A∈R^{m*2}, b∈R^{m*1}
function H = half_space_2D(H, A, b, varargin)
if(isempty(H))
H.p_limit = varargin{1}; % 图形边界
H.P = [H.p_limit(2) H.p_limit(1) H.p_limit(1) H.p_limit(2); H.p_limit(4) H.p_limit(4) H.p_limit(3) H.p_limit(3)];
H.clr = varargin{2}; % 可行域颜色
H.mode = varargin{3}; %
try
H.name = varargin{4}; %
catch
H.name = 'domain';
end
H.n = size(A, 1); % 确认半平面数目
v = linspace(min(H.p_limit), max(H.p_limit), 200);
[H.x, H.y] = meshgrid(v); % get 2-D mesh for x and y
if(isequal(H.mode, 'condition'))
% 绘制约束条件
for i = 1:H.n
[x, ~] = calcu_halfspace(A(i, :), b(i, :), H.P);
H.handle_space(i) = patch(x(1, :), x(2, :), H.clr(i), 'facecolor', H.clr(i), 'facealpha', 0.5, 'displayname', H.name);
end
elseif(isequal(H.mode, 'domain'))
% 绘制可行域
[x, ~] = calcu_polyhedron(A, b, H.P);
H.handle_space = patch(x(1, :), x(2, :), H.clr(1), 'facecolor', H.clr(1), 'facealpha', 0.5, 'displayname', H.name);
else
error('Error mode, ''condition'' or ''domain''. ');
end
% 绘制边框
H.handle_bound = plot(H.P(1, mod(0:4,4)+1), H.P(2, mod(0:4,4)+1), 'k.--', 'HandleVisibility', 'off');
axis(H.p_limit);
else
if(H.n ~= size(A, 1))
error('Error size A');
end
if(isequal(H.mode, 'condition'))
% 绘制约束条件
for i = 1:H.n
[x, ~] = calcu_halfspace(A(i, :), b(i, :), H.P);
H.handle_space(i).XData = x(1,:);
H.handle_space(i).YData = x(2,:);
end
elseif(isequal(H.mode, 'domain'))
[x, ~] = calcu_polyhedron(A, b, H.P);
H.handle_space.XData = x(1,:);
H.handle_space.YData = x(2,:);
end
end
end
%% 计算半空间和可行域
% Ax \le b, A\in R(m,2), b\in R(m,1), P\in R(2, 4)
function [x, flag] = calcu_polyhedron(A, b, P)
flag = true;
m = size(A, 1);
x = [];
% 与坐标轴
for k = 1:m
[~, mall] = calcu_halfspace(A(k, :), b(k, :), P);
x = [x, mall];
end
% 与不同边界
for k = 1:m
for j = (k+1):m
if(abs(det([A(k, :); A(j, :)])) > 1e-6)
x = [x, [A(k, :); A(j, :)]\[b(k);b(j)] ];
end
end
end
% 获取有效的边界
x_right = x(:, all(A*x-b <= 1e-6, 1));
% plot(x_right(1, :), x_right(2, :), 'k*', 'markersize', 20);
x_right = unique(x_right', 'rows')';
% 获取凸包
try
k = convhull(x_right(1, :),x_right(2, :));
x = x_right(:, k);
catch
x = zeros(2, 1);
flag = false;
fprintf('[half_space_2D] empty polyhedron \n');
end
end
% Ax \le b, A\in R(1,2), b\in R(1,1), P\in R(2, 4)
function [x, xall] = calcu_halfspace(A, b, P)
b = b/norm(A); % 顺序不可交换
A = A/norm(A);
% 基于P生成直线
nP = size(P, 2);
A_P = [ones(nP, 1), zeros(nP, 1); zeros(nP, 1), ones(nP, 1)];
b_P = [P(1, :), P(2, :)]';
% 基于有效边界生成边界点
xall = P;
for k = 1:size(A_P, 1)
if(abs(det([A_P(k, :); A])) > 1e-6)
xall = [xall, [A_P(k, :); A]\[b_P(k);b]];
end
end
% 获取有效的边界
xall = xall(:, A*xall-b <= 1e-6);
% xall = unique(xall', 'rows')';
try
k = convhull(xall(1, :),xall(2, :));
x = xall(:, k);
catch
x = zeros(2, 1);
fprintf('[half_space_2D] empty halfspace \n');
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取