👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:本研究使用主从方法为微电网的规划分布式发电(DG)分配提出了一种新的问题公式。在先前的规划研究中,所有危险品均具有相同的运行模式(例如,以统一的功率因数运行)。对于由主从控制的微电网,DG具有两种可能的运行模式:主模式(非单位功率因数运行)和从模式(单位功率因数运行)。对于计划主从控制的微电网,除了DG选址外,还可以通过在计划问题中包括一组新的约束条件来确定最佳DG运行模式。因此,以最小化微电网的能量损失为主要目标,提出的公式能够确定主从DG的最佳位置。提出的模型被公式化为混合整数非线性规划问题。集成到最佳功率流框架中,并在考虑可变负载曲线的IEEE 38总线系统上进行了测试。除此之外,系统中的从属DG还针对不同负载类型和无功功率注入的案例研究进行了敏感性分析(例如,以固定的非单位功率因数运行)。
电力系统中分布式发电(DG)的快速增长的集成,是引起人们对微电网日益增长的兴趣的主要驱动力之一。微电网自主运行的能力是[1]中发现的未来智能电网设计的主要特征之一。
为了最大程度地利用分布式发电系统在配电系统中的优势,已经进行了广泛的研究[2-6],以最佳地确定分布式发电系统的大小和位置,以增强配电系统的运行。根据现有文献,可以对DG进行最佳定位,以实现技术或经济利益。DG分配研究中使用的经济目标包括最大化利润和最小化运营成本[7]。另一方面,在[4,8]中讨论的有功功率和无功功率的减少,电压分布的增强[9]和稳定性的提高[6]是已实现DG尺寸和选址的技术目标。在[10]中,通过制定一个多目标优化问题来考虑技术和经济方面的问题,该问题可以在计划期内最大化系统负荷以及配电公司的利润。此外,[11]中的研究通过使用指数负载模型,考虑了电压相关负载的影响,确定了在单位功率因数下运行的DG的大小和位置。
自主微电网的运行已逐渐普及,并且大多数研究工作集中在运行方面,例如[12,13]中讨论的稳定性增强,[14,15]中找到的稳定运行的最佳控制方案和谐波。 [16,17]中提供了用于提高电能质量的缓解措施。从分配具有各种目标的DG的角度来看,最近的研究集中在微电网的规划方面。文献[18]中的规划方法为并网微电网选择了最佳的DG类型,同时考虑了固定的DG大小和单位功率因数操作,以实现分布式能源(DER)的最小投资成本。同样,[19]中的研究确定了最佳DG位置和容量,对于并网的微电网,它对应于最小的功率损耗和节点电压偏差。在[20]中提出了一种方法,该方法确定可调度和间歇性发电与DG分配的最佳组合的大小,以最大化径向系统的长期经济利润。在[21]中讨论了能源管理的运营策略,并结合了优化DG容量和类型。但是,本研究中未对DG的位置进行优化。鉴于[22]中着重于在适当的位置部署最佳尺寸的DG,以实现具有成本效益的解决方案以及估计的可靠性标准,但是该研究仅针对实际发电和需求。在[20]中提出了一种方法,该方法确定可调度和间歇性发电的最佳组合以及DG分配的大小,以使径向系统的长期经济利益最大化。在[21]中讨论了能源管理的运营策略,并结合了优化DG容量和类型。但是,本研究中未对DG的位置进行优化。鉴于[22]中着重于在适当的位置部署最佳尺寸的DG,以实现具有成本效益的解决方案以及估计的可靠性标准,但是该研究仅针对实际发电和需求。在[20]中提出了一种方法,该方法确定可调度和间歇性发电与DG分配的最佳组合的大小,以最大化径向系统的长期经济利润。在[21]中讨论了能源管理的运营策略,并结合了优化DG容量和类型。但是,本研究中未对DG的位置进行优化。鉴于[22]中着重于在适当的位置部署最佳尺寸的DG,以实现具有成本效益的解决方案以及估计的可靠性标准,但是该研究仅针对实际发电和需求。
当考虑并网的微电网时,实施的DG通常负责实际发电。[23]中的研究讨论了微电网中最佳无功功率规划的方面,并根据电压限制约束评估了微电网的成功,其中DG以单位功率因数运行。相反,在[24]中提出的计划是针对自治微电网执行的,该电网将针对实际电源的分布式储能资源(DESR)与针对无功注入的分布式无源(DRS)进行了优化分配。
通常有两种主要的控制方案用于控制孤岛微电网中的DG。下垂控制和主从控制。在基于下垂的控制中,系统的频率和电压根据有功功率和无功功率而变化[25]。这导致系统中这两个参数的变化。为了最小化电压和频率偏差,稳定电压分布,减少微电网中的分布和转换损耗,采用主从控制以改善微电网的电压-频率控制模式(V–f)的整体运行[ 26]。主DG单元通过V–f控制来调节微电网的电压和频率,而从DG单元则通过P–Q进行控制。主机DG根据电压设定值控制注入固定的有功(或无功)功率。在文献中已经进行了一些有关使能量损失最小化的工作。文献[27]中的研究生成了一个发电负荷模型,该模型解决了基于间歇性风能的DG和随机负荷的确定性规划问题。
微电网的分布式电源优化配置研究
一、微电网与分布式电源概述
-
微电网定义与特征
微电网是由分布式电源(DG)、储能装置、负荷、能量转换设备及监控保护系统构成的小型发配电系统。其核心特征包括:- 微型化:电压等级通常低于10kV,规模在兆瓦级及以下。
- 清洁性:以可再生能源为主(如光伏、风电)或实现能源综合利用。
- 自治性:具备离网运行能力,与主电网的电量交换不超过总需求的20%。
- 友好性:减少对主电网的冲击,支持平滑切换运行模式。
-
分布式电源类型与特点
分布式电源是微电网的核心能源来源,主要包括:- 可再生能源:光伏、风电、生物质能等,具有环境友好但出力波动性大的特点。
- 储能系统:电池、超级电容等,用于削峰填谷和黑启动。
- 备用电源:柴油发电机、微型燃气轮机等,提供稳定备用功率。
根据中国电力企业联合会标准,分布式电源需满足就地消纳为主、接入35kV以下电网的要求。
二、分布式电源优化配置的关键技术
-
容量优化配置
- 目标函数:需综合考虑经济性(投资、运维成本)、环保性(碳排放)和可靠性(供电不足概率)。例如,文献[12]构建了包含投资费用、燃料成本、污染物排放的多目标模型。
- 不确定性建模:光伏、风电的出力受光照、风速等自然因素影响,需采用时序生产模拟或随机优化方法。
-
多目标优化模型
- 典型模型:包括最小化总成本(投资+运维+环境成本)、最大化可再生能源利用率等。例如,基于灰狼算法的研究引入自平衡率和可再生能源利用率作为评价指标。
- 约束条件:涵盖供需平衡、设备容量限制、电压波动范围等。
-
协调控制策略
- 分层控制:中央控制器负责全局优化,本地控制器实现快速响应。
- 优先级调度:根据电源特性和负荷需求动态调整出力顺序。
- 需求侧响应:通过分时电价或激励措施调整负荷曲线,优化电源配置。
-
智能优化算法
- 经典算法:粒子群算法(PSO)、遗传算法(GA)等用于解决非线性优化问题。
- 改进算法:如自适应蚁群算法(动态调整信息素)、灰狼算法(引入需求响应)和两阶段鲁棒优化(应对不确定性)。
-
储能配置技术
- 场景分析:针对调峰、黑启动、电压支撑等需求,构建储能容量与布局模型。例如,珠海外伶仃岛项目通过储能优化实现风光互补。
三、优化配置方法与模型实例
方法 | 特点 | 应用案例 |
---|---|---|
灰狼算法 | 结合需求响应,优化源-网-荷-储协同,支持多目标非线性求解 | 某微电网项目验证自平衡率提升15%,可再生能源利用率达85% |
自适应蚁群算法 | 动态调整信息素,适应复杂约束(如供需平衡、设备容量) | 珠海外伶仃岛微电网实现风电-光伏-储能最优配比 |
两阶段鲁棒优化 | 第一阶段优化调度,第二阶段应对不确定性(如风光波动) | 应用于风电-光伏-燃气轮机混合系统,降低初始投资成本20% |
NSGA-Ⅱ多目标遗传算法 | 处理高维非凸问题,生成Pareto最优解集 | IEEE 33节点系统验证经济性与可靠性平衡 |
四、实际应用案例
-
内蒙古薛家湾微电网群试点
- 技术方案:构建交流并离网型微电网,集成储能和一体化监控平台,提升新能源消纳能力。
- 成效:预计成为蒙西地区首个智能调控案例,保障末端电网供电可靠性。
-
深圳湾科技生态园微电网
- 配置:142kW光伏+90kWh储能,支持多子微网协同。
- 亮点:通过峰谷电价策略降低运行成本,实现80%光伏就地消纳。
-
海岛离网微电网(外伶仃岛)
- 优化方法:基于自适应蚁群算法,配置风电-光伏-蓄电池容量,满足离岛负荷需求。
- 结果:系统总成本降低12%,可靠性指标(LPSP)<3%。
五、挑战与发展趋势
-
当前挑战
- 不确定性管理:风光出力预测误差导致配置冗余或不足。
- 多能源协调:热电联供、氢能等新型电源的协同控制难度大。
- 标准化缺失:微电网规划缺乏统一规范,导致经济效益波动。
-
发展趋势
- 多能互补系统:风光-储能-氢能协同,提升能源利用率。
- 人工智能深化应用:深度学习用于出力预测,强化学习优化实时调度。
- 虚拟电厂(VPP)整合:通过聚合分布式资源参与电力市场交易,提升经济性。
六、结论
微电网的分布式电源优化配置需以多目标协同为核心,结合智能算法与场景化储能设计。未来研究需进一步解决不确定性建模、多能源协调及标准化问题,推动微电网向高效、智能、可持续方向发展。实际项目中,需根据地理条件、负荷特性和政策环境选择适配的优化策略,例如海岛场景侧重离网可靠性,城市园区注重经济性与环保性平衡。
📚2 运行结果
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。