💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
混合动力汽车(HEV)的Simscape模型研究
这是一个用于乘用车混合动力汽车(HEV)模型的Simscape模型。系统的输入是车辆的目标速度,车辆控制器根据目标速度相应地控制HEV系统中的电动机、发电机和发动机,以达到目标车速。因此,系统的输出是实际车速。此外,我们还输出系统的状态信息,如电动机速度、发电机速度、发动机速度和电池的充电状态(SoC)以便进行车外诊断监控。
混合动力电动汽车(HEV)的Simscape模型是利用MATLAB和Simulink中的Simscape工具箱构建的,该工具箱专为多领域物理系统建模而设计。通过Simscape,工程师和研究人员能够创建包含电气、机械、热、流体等多个物理领域的复杂系统模型。针对HEV的Simscape模型,主要会涉及到以下几个关键部件和子系统的建模:
-
电力驱动系统:包括电池模型、DC/DC转换器、电机控制器以及电动机。这个部分需要详细模拟电池的充放电特性、电机的扭矩输出与效率、以及电力电子器件的转换效率和损耗。
-
内燃机系统:如果HEV采用的是并联或混联构型,模型中还会包括内燃机(如汽油发动机)、变速箱、以及与之相关的燃油系统和排放系统。需考虑发动机的输出功率、燃油消耗率以及怠速、加速等不同工况。
-
能量管理策略:这是HEV模型的核心之一,涉及如何根据车辆状态(如车速、电池电量等)智能分配内燃机和电机的功率输出,以实现最大效率或最小排放。这通常涉及复杂的控制逻辑,可能采用规则-based控制、模糊逻辑、最优控制理论等策略。
-
传动系统:包括车辆的传动装置(如CVT、自动变速器)和车轮。需要模拟机械传动效率、差速器工作原理以及轮胎与地面的摩擦力等。
-
车辆动态模型:这部分涵盖车辆的运动学和动力学,如车辆的质量、惯性、空气阻力、滚动阻力等,以及制动系统和转向系统的模型。
-
能量回收系统:在制动过程中,能量可以通过电机转化为电能并回馈给电池,这个过程也需在模型中体现,包括制动时的能量流动和控制策略。
构建HEV的Simscape模型时,工程师会利用Simscape库中的预定义组件(如电动机、电池、发动机等)以及自定义组件来精确匹配特定HEV的设计。通过搭建模型、参数化、仿真运行和结果分析,可以评估HEV在不同驾驶循环下的性能(如燃油经济性、排放、加速能力等),并且优化设计参数或控制策略,从而推动HEV技术的进步。
一、HEV的基本结构和工作原理
混合动力汽车(HEV)通过内燃机(ICE)与电动机(EM)的协同工作,实现燃油效率提升和排放降低。其核心组件包括:
- 动力源:
- 内燃机(ICE) :作为主要动力源,在中高速行驶时提供动力,但需通过能量管理策略优化其运行区间以减少油耗。
- 电动机(EM) :在低速、启动阶段单独驱动车辆,并在加速时提供额外扭矩支持;制动时通过再生制动系统回收能量。
- 能量存储系统:
- 锂离子电池或超级电容器存储电能,并通过DC-DC转换器与动力系统连接。
- 传动系统:
- 变速器(TR)协调ICE和EM的扭矩输出,P2架构中电动机位于发动机与变速箱之间,实现灵活的动力分配。
- 能量管理控制系统(EMS):
- 实时监控车辆状态(如车速、电池荷电状态SoC),动态调整动力分配策略,优化燃油经济性和排放。
HEV的工作模式包括:
- 纯电驱动(低速/启动)、混合驱动(中高速)、能量回收(制动/减速)和怠速停机(减少无效能耗)。
二、Simscape在HEV建模中的核心优势
Simscape作为多领域物理建模工具,在HEV仿真中具备以下特点:
- 模块化建模:
- 提供预定义的车辆模板(如动力总成、悬架、电池模块),支持快速搭建HEV系统架构,并允许自定义组件(如多连杆悬架、燃料电池堆)。
- 多物理场集成:
- 通过电气(Electrical)、机械(Multibody)、流体(Fluids)等子库,实现电驱系统、热管理系统与机械传动的耦合仿真。
- 通过电气(Electrical)、机械(Multibody)、流体(Fluids)等子库,实现电驱系统、热管理系统与机械传动的耦合仿真。
- 控制策略开发支持:
- 与Simulink无缝集成,便于开发再生制动算法、扭矩分配策略,并验证ADAS功能。
- 验证与优化能力:
- 支持硬件在环(HIL)测试,通过参数调优工具优化设计(如电池容量选择、电机效率曲线匹配)。
三、基于Simscape的HEV建模方法与参数设置
3.1 建模流程
- 架构选择:
- 确定HEV类型(如并联P2、串联或混联),参考Simscape车辆模板中的动力总成架构库。
- 子系统划分:
-
动力总成:集成ICE、EM、离合器及传动轴;
-
电池系统:使用Simscape Electrical中的锂离子电池模型,设置容量、内阻、充放电曲线;
-
车辆动力学:基于轮胎模型(如Magic Formula)和车身质量参数构建纵向/横向运动模型。
-
- 控制逻辑设计:
- 实现基于规则的EMS(如电量维持模式)或优化算法(动态规划、等效燃油消耗最小策略ECMS)。
3.2 关键参数设置示例
组件 | 参数类型 | 设置方法 |
---|---|---|
电动机 | 最大扭矩-转速曲线 | 导入实测数据或通过效率图(Efficiency Map)生成 |
电池 | 容量(Ah)、开路电压 | 基于电芯数据串联/并联配置,并设置SOC-电压关系 |
变速器 | 齿轮比、传动效率 | 使用Simscape Driveline中的齿轮箱模块,输入速比和机械损耗系数 |
热管理 | 冷却液流量、换热系数 | 在流体网络中定义泵、阀门和散热器的物理参数 |
四、HEV Simscape模型的验证方法及案例
4.1 验证流程
- 静态验证:
- 对比子系统模型(如电机扭矩输出、电池充放电效率)与制造商数据或实验台架结果。
- 动态验证:
- 使用标准驾驶循环(如FTP75、WLTC)测试整车性能,分析燃油消耗、电池SOC变化与实际路试数据的一致性。
- 敏感性分析:
- 调整关键参数(如电池内阻、传动效率),评估模型输出鲁棒性。
4.2 典型案例
- 丰田发动机模型验证:
使用Simscape构建包含EGR和扭矩转换器的高精度模型,通过与非因果模型和实测数据对比,误差控制在0.3%以内,加速了ECU开发。 - 光伏-电池混合系统验证:
在部分遮荫条件下,Simscape电池模型与实测I-V曲线的误差小于3%,验证了多能源协同控制的可靠性。
五、未来研究方向
- 智能化控制策略:
- 集成强化学习(RL)算法,实现自适应能量管理。
- 多尺度建模:
- 结合电芯微观模型(如电化学-热耦合)与整车宏观仿真,提升电池寿命预测精度。
- 虚拟测试场景扩展:
- 利用三维道路数据生成复杂工况(如山地、拥堵),验证HEV在极端环境下的稳定性。
📚2 运行结果
部分代码:
figure;
set(gcf,'color',[1 1 1]);
%%
subplot(311)
plot(Ref_VehSpd_kph(:,1),Ref_VehSpd_kph(:,2),'linewidth',2);
hold all
plot(VehSpd_kph(:,1),VehSpd_kph(:,2),'--','linewidth',2);
grid on
legend('HEV Vehicle Speed Reference','HEV Actual Vehicle Speed')
ylabel('Speed Km/hr','Fontsize',18);
xlabel('Time Seconds','Fontsize',18);
subplot(312)
plot(Motor_Speed_rpm(:,1),Motor_Speed_rpm(:,2),'linewidth',2);
hold all
plot(Generator_Speed_rpm(:,1),Generator_Speed_rpm(:,2),'--','linewidth',2);
plot(Engine_Speed_rpm(:,1),Engine_Speed_rpm(:,2),'--','linewidth',2);
grid on
legend('Motor Speed','Generator Speed','Engine Speed')
ylabel('Rotational Speed RPM','Fontsize',18);
xlabel('Time Seconds','Fontsize',18);
subplot(313)
plot(Battery_SOC_pct(:,1),Battery_SOC_pct(:,2),'linewidth',2);
hold all
grid on
legend('Battery SoC')
ylabel('%','Fontsize',18);
xlabel('Time Seconds','Fontsize',18);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张嘉祺.基于强化学习的混合动力汽车能量管理策略研究[D].燕山大学[2024-05-28].
[2]曾鸣,史慧.混合动力汽车全寿命周期成本计算模型及分析[J].现代电力, 2014(001):031.
[3]张欣,王颖亮,杜微,等.混合动力电动汽车综合能量流模型仿真[J].机械工程学报, 2009, 45(2):5.DOI:JournalArticle/5af2d338c095d718d8fdd7da.
🌈4 Matlab代码、Simulink仿真实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取