V2G模式下含分布式能源网优化运行研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

V2G模式下含分布式能源网优化运行研究

一、V2G模式与分布式能源网的核心概念

二、V2G与分布式能源网的协同技术架构

三、优化目标与约束条件

四、优化算法与案例分析

五、挑战与解决方案

六、未来研究方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章下载

💥1 概述

文献来源:

V2G模式下含分布式能源网优化运行研究

 在当今能源和环境问题以及政府政策的驱动下,电动汽车(EV)产业迎来风口,得以在近几年高速发展;同时,分布式清洁能源的并网运行也成为当今趋势。电动汽车与分布式能源(DER)虽能带来很多益处,但也伴随着一些问题,其会对配电网造成着冲击。因此,为减小电动汽车无序入网和分布式能源的波动性给配电网带来的影响,本文展开了V2G ( vehicle to grid)模式下含分布式能源的配电网优化运行研究。

据交管局数据,截止2018年底,全国新能源汽车保有量达261万辆,比2017年增加107万辆,增长近七成,且纯电动汽车保有量211万辆,占新能源汽车总量的81.06%。下图1.1是近5年来全国新能源汽车保有量统计数据,由图可以看出这5年中新能源车保有量呈快速增长趋势,而且据《2019中国新能源汽车消费趋势报告》预测,新能源汽车在2019的年销量将达172万辆,同比2018年增长40%。“2019中国电动汽车百人会论坛”上,相关专家就当前电动汽车的发展和热点问题展开了讨论,预计到2025年,电动汽车的续航里程和价格将与传统燃油汽车相当;到2030年,我国电动汽车产销将超过1500万辆,保有量将达到8000万辆,非化石能源的发电量有可能占到一半左右。可见,如果持续发展和使用电动汽车,既可减少传统化石能源的使用,又可降低燃油汽车尾气对环境的污染,对于节能减排具有重要作用(4-6]。

当前关于电动汽车与分布式能源入网的配电网优化运行研究,除了考虑电动汽车自身的充放电策略或者V2G技术外,还应着眼于两方面,一是考虑配电网更为严苛的安全运行条件,二是实现配电网实时的优化,特别是考虑不确定性和波动性都很强的分布式能源与电动汽车,需对其进行实时优化以更符合实际情况。
 基于上述的研究现状,可以发现,无论是对电动汽车的有序充放电管理,还是电动汽车与含分布式能源的配电网互动,国内外学者从各个方面展开研究,已取得了大量的成就。但就目前研究来讲,仍还有一些不足之处和值得深入的地方。
(1)关于电动汽车的调度方法。电动汽车不同于传统负荷,基于V2G技术其具备充放电的特性,可将其作为可控负荷和储能设备,电动汽车单辆的充放电功率虽然不大,但随着日益增多的电动汽车入网也面临着调度困难的问题。再者,电动汽车由于充放电特性,又涉及时空两个维度,意味着电动汽车控制变量复杂多样。当前的研究,要么着眼于个体调度,适用于车辆较少情况,随着车辆增多,将面临着变量维度过大使得求解困难甚至无解的情况;要么着眼于群体调度,虽然减少了维度,但没有考虑单辆电动汽车的车况,难以适用实际情况。因此,对于一定规模的电动汽车,如何选择合理的调度方法来配合电动汽车充放电策略的实施,提高求解效率,
是当前研究需要解决的问题。
(2)关于配电网更为严苛的安全运行问题。关乎安全性,配电网的继电保护是必须要考虑到的问题,而当前研究对电动汽车与分布式能源入网对配电网继电保护的影响研究还尚处在起步阶段,因此对含电动汽车与分布式能源的配电网关于继电保护层面的优化研究也是当前研究还需要深入之处。
(3)关于含电动汽车与分布式能源配电网实时的优化。由于电动汽车充电行为时间和空间的随机性、分布式能源出力的波动性以及负荷预测的误差均会给配电网的优化运行带来挑战,因此还需在根据预测信息所得日前优化的基础上,对日前优化结果进行修正,以符合实际的运行情况要求。

一、V2G模式与分布式能源网的核心概念
  1. V2G技术定义与原理
    V2G(Vehicle-to-Grid)通过电动汽车(EV)与电网的双向能量交互,将车载电池作为分布式储能单元,实现削峰填谷、调频调压等功能。其核心架构包含:

    • 硬件层:双向AC/DC和DC/DC变换器,支持能量双向流动。
    • 控制层:虚拟同步策略(VSC)模拟传统发电机特性,通过调节有功/无功功率响应电网波动。
    • 通信层:聚合器与区块链技术协调分布式EV的充放电行为,确保数据安全和交易透明。
  2. 分布式能源网组成
    分布式系统由可再生能源(光伏、风电)、储能设备(电池、飞轮)、能源管理系统(EMS)及配电网络构成。其特点包括:

    • 多能互补:通过微电网整合多种能源,提高可再生能源渗透率。
    • 灵活性:本地化能源生产与消费,降低对集中式电网的依赖。

二、V2G与分布式能源网的协同技术架构
  1. 系统集成模式

    • 集中式架构:由聚合器统一调度EV充放电,优化电网负荷曲线。例如,河北电网案例中,70%的V2G参与率可降低总成本3.45%。
    • 分布式架构:基于区块链的分层架构(数据存储层、智能合约层、交易层)实现去中心化调度,支持动态定价与隐私保护。
  2. 关键技术模块

    • 虚拟同步控制:通过虚拟惯量和阻尼系数调节,平抑光伏发电的间歇性波动。
    • 双向充放电策略:分时电价诱导用户参与需求响应,优化负荷曲线。例如,采用零和博弈模型平衡车主与电网利益。
    • 多能互补优化:结合P2G(电转气)技术,将多余电能转化为燃气存储,提升系统可靠性。

三、优化目标与约束条件
  1. 多目标优化模型

    • 经济性:最小化年化总成本(设备投资、运维、电网损耗)。
    • 电网稳定性:降低峰谷差(如TOU电价机制可削减峰值负荷15%)。
    • 环境效益:减少碳排放(整合可再生能源后碳排放降低3.45%)。
    • 用户需求:确保充电满意度(SOC限制为80%以延长电池寿命)。
  2. 典型约束条件

    • 设备限制:分布式电源出力范围、EV充放电功率(如1C倍率)。
    • 电网约束:节点电压波动≤±10%、辐射状拓扑结构。
    • 电池寿命:充放电深度(DOD)与循环次数建模。

四、优化算法与案例分析
  1. 算法对比与适用场景

    • 遗传算法(GA) :适用于多目标优化,如在虚拟电厂中平衡运行成本与碳排放。
    • 粒子群优化(PSO) :在光储充微网中降低峰谷差率,提升经济性。
    • 深度强化学习(DRL) :处理高维状态空间(如100辆EV协同调度),需求侧峰值削减率提高15%。
    • 改进灰狼算法(MOIGWO) :解决风光荷储微网的多目标日前调度,优化电压偏差。
  2. 典型应用案例

    • 工业园区微电网:通过V2G与储能协同,实现可再生能源消纳率提升20%。
    • 城市充电站规划:基于混合整数二阶锥模型(MISOCP),优化光伏与EV充电站的联合配置。
    • 河北电网低碳调度:V2G参与率70%时,碳减排与经济性达到最优平衡。

五、挑战与解决方案
  1. 技术挑战

    • 电池寿命损耗:频繁充放电加速老化(解决方案:引入电池健康度模型,优化充放电深度)。
    • 通信延迟:影响分布式算法收敛速度(解决方案:改进一致性算法,容忍随机时延)。
    • 功率波动:EV无序接入导致电压越限(解决方案:分层分区控制策略,结合静态无功补偿)。
  2. 管理与政策挑战

    • 商业模式:缺乏多方共赢的收益分配机制(解决方案:基于区块链的智能合约自动执行交易)。
    • 基础设施:充电桩覆盖率不足(解决方案:开发太阳能充电桩,降低电网依赖)。

六、未来研究方向
  1. 技术融合:探索V2G与氢能储能的协同,提升长期储能能力。
  2. 智能化升级:结合数字孪生技术,实现实时仿真与预测性调度。
  3. 市场机制:设计动态电价与碳交易结合的双重激励政策。

结论
V2G与分布式能源网的协同优化需从技术架构、算法设计、市场机制多维度突破。通过虚拟同步控制、区块链调度及多目标优化算法,可显著提升电网稳定性与经济性。未来需进一步解决电池寿命、通信效率及商业模式问题,推动能源互联网的智能化转型。

📚2 运行结果

 

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]梅哲. V2G模式下含分布式能源的配电网优化运行研究[D].西华大学,2019.DOI:10.27411/d.cnki.gscgc.2019.000111.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值